

Welcome to QGraph’s documentation!

Contents:

	Introduction
	Why QGraph?

	How do I get started?

	Basics
	How does it work?

	User Profiles and Events
	User Profiles

	Events

	Android SDK integration
	Installation in Android Studio
	A. If you use FCM
	Note

	B. If you use GCM

	Installation in Cordova

	Using Android SDK
	Import QG SDK in your activity

	Initialization of SDK

	Logging user profiles

	Logging events

	Retrieving stored notifications

	Configuring Batching

	InApp Notifications

	Event Attribution

	Notification checklist
	Launcher image

	Notification image

	Recommended sizes of images

	If you use your own Service to extend GCMListenerService

	Receiving key value pairs in activity

	iOS SDK integration
	Installing iOS SDK Library
	Using Cocoapods

	Manual installation

	Generating .p12 file
	Generating SSL Certificate for APP ID

	Generating the Certificate Signing Request

	Using iOS SDK - Objective C
	Change required for APNS Token and User Tracking

	AppDelegate Changes

	Handling Push Notification

	Changes for iOS 10

	AppDelegate Changes for iOS 10

	Handling Push Notification in iOS 10

	Handling Deeplink for QGraph Push

	Adding Extensions for iOS Push with Attachment and QGraph Carousel and Slider Push

	Notification Service Extension
	Adding Service extension

	Adding Content Extension

	Click Through and View Through Attribution

	Configuring Batching

	Matching mobile app users with mobile web users

	In app Notification

	Registering Your Actionable Notification Types

	Logging user profile information

	Logging events information

	Using iOS SDK - Swift (3.0)
	Change required for APNS Token and User Tracking

	Adding bridging headers

	App Delegate Changes

	Handling Push Notification

	Changes for iOS 10

	AppDelegate Changes for Swift Apps for iOS 10

	Handling Push Notification in iOS 10

	Handling Deeplink for QGraph Push

	Adding Extensions for iOS Push with Attachment and QGraph Carousel and Slider Push

	Notification Service Extension

	Adding Service extension

	Adding Content Extension

	Click Through and View Through Attribution

	Configuring Batching

	Matching mobile app users with mobile web users

	In app Notification

	Registering Your Actionable Notification Types

	Logging user profile information

	Logging events information
	Registration Completed

	Category Viewed

	Product Viewed

	Product Added to Wishlist

	Product Purchased

	Checkout Initiated

	Product Rated

	Searched

	Reached Level

	Your custom events

	Web SDK integration
	Background and Terminology

	Installing Web Pixel
	If your site is HTTPS

	If your site is HTTP

	Logging Data
	Logging profile information

	Logging event information

	Advanced Integration Topics
	Passing Dates and Times to QGraph Servers
	Format for Date

	Format for Time

	Format for Datetime

	Passing data to QGraph from your servers

	Using Web UI
	1. Recent Users

	2. Recent Activities

	3. Segments

	4. Campaigns

	Using API
	Sending notifications
	Specifying key value pairs

	Getting user profiles
	Specifying start and end dates

	Specifying OS

	Specifying specific fields to retrieve

	Create a user uploaded segment

	Downloads
	Android

	iOS

Introduction

QGraph is the User Engagement Platform for your mobile app and websites.

If you are an app or website developer you know that keeping your users engaged
with your app or website is very important. Push (App push or web push), email
and SMS are most important channels for app engagement.

Using QGraph you can send relevant, timely and personalized push
notifications, emails and SMS to your users.

Why QGraph?

QGraph is the easiest way to send notifications to your app users.
When you use QGraph, you do not need to worry about intricacies
and mechanism of sending notifications, which vary widely across
different platforms. These intricacies are all abstracted out in
our SDK.

We have made the process of sending notifications as simple
as writing a “Hello World!” program. From registering on our
site to sending a test notification should take less than
15 minutes.

We provide the capabilities for fine grained segmentation
and message customization at per user level. We provide detailed
statistics about the response to the notifications.

How do I get started?

Head over to
http://qgraph.io/
and make an account for yourself.

Follow the setup steps given there and send a test notification to one or
more devices.

Once you are done, go to the section “Using QGraph SDK” to do a
complete integration with your app.

You can use our web app at
http://app.qgraph.io/
to manage segments and campaigns.

Basics

How does it work?

Here is a thousand feet overview of how QGraph SDK sends notifications to your app users.

	You register at our site integrate the SDK in your app. SDK provides you with some functions that you can call to send us data related to your app users.

	You send us user data by calling the functions of the SDK. There are two types of data: user profile data, like the name of user, gender of user, city of user etc) and event (activity) data, like a user viewing a product, a user purchasing a product, etc.

	You go to our web panel at http://app.qgraph.io. You create one more segments. A segment is a set of users. For instance you can create a segment of the users who reside in Bangalore and have not opened your app in last 7 days. You also create a campaign. A campaign is a segment together with a creative (i.e. the title, the message, the image etc of the notification). Once you have created a campaign, you send the notification.

	After you send the notification, you can go to respective campaign and view statistics around how many of those notifications were opned, and what events happend as a result of notifications.

User Profiles and Events

Nextly you need to know about user profiles and events.

User Profiles

User profile is information regarding attributes of the user: for instance his name, email, city,
gender and so on. User profile may contain information that is specific to your app, for example, the maximum level attained in a gaming app, total lifetime purchase made by a user, or his interests. Each user profile item has a “key” and a “value”. For instance for the name of a person, the key is “name” and value might be “John Appleseed”.

Events

Events are the activities that a user performances, for instance viewind a product, purchasing a product, playing a game or liking an item. Each event has a name, say “product_viewed”, or “product_purchased”. Each event also has some parameters which consist of “keys” and “values”. For instance, for the event “product_viewed”, the parameter keys would be “id”, “name”, “img_url”, “deep_link” etc with sample values 123, “Nikon Camera”, “http://mysite/product/123.png” and “myapp://myapp/product/123” respectively.

Android SDK integration

Installation in Android Studio

A. If you use FCM

	Add dependencies to app/build.gradle:

compile "com.quantumgraph.sdk:QG:5.2.0"
compile 'com.google.firebase:firebase-messaging:11.2.2'

	If you have implemented FirebaseMessagingService in your project add the following code inside onMessageReceived(RemoteMessage remoteMessage) method:

String from = remoteMessage.getFrom();
Map data = remoteMessage.getData();
if (data.containsKey("message") && QG.isQGMessage(data.get("message").toString())) {
 Bundle qgData = new Bundle();
 qgData.putString("message", data.get("message").toString());
 Context context = getApplicationContext();
 if (from == null || context == null) {
 return;
 }
 Intent intent = new Intent(context, NotificationJobIntentService.class);
 intent.setAction("QG");
 intent.putExtras(qgData);
 JobIntentService.enqueueWork(context, NotificationJobIntentService.class, 1000, intent);
 return;
 }

	If you have implemented FirebaseInstanceIdService, add the following code inside onTokenRefresh():

QG.logFcmId(getApplicationContext());

	Additional settings:

	If you would like to reach out to uninstalled users by email, add following line in app/src/main/AndroidManifest.xml outside the <application> tag:

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

	If you would like us to track the city of the user, add the following line in app/src/main/AndroidManifest.xml outside the <application> tag:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

	If you would like us to track device id the user, add the following line in app/src/main/AndroidManifest.xml outside the <application> tag:

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

Note

If while building your project, you get a ClassNotFoundException, check the following

	Check that you are using Support Library version 26 or above

compile 'com.android.support:appcompat-v7:26.0.1'

	Check that you have included maven properly in project/build.gradle

allprojects {
 repositories {
 jcenter()
 maven {
 url "https://maven.google.com"
 }
 }
}

B. If you use GCM

We prefer that you integrate using FCM. However, if you are already using GCM (and have GCM tokens), follow the following steps

	Add dependencies to app/build.gradle:

compile "com.quantumgraph.sdk:QG:2.3.5"
compile "com.google.android.gms:play-services-gcm:11.2.2"

	Additional settings:

	If you would like to reach out to uninstalled users by email, add following line in app/src/main/AndroidManifest.xml outside the <application> tag:

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

	If you would like us to track the city of the user, add the following line in app/src/main/AndroidManifest.xml outside the <application> tag:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

	If you would like us to track device id the user, add the following line in app/src/main/AndroidManifest.xml outside the <application> tag:

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

	If you use your own service that extends GCMListenerService, following code snippet must be added in your service:

@Override
public void onMessageReceived(String from, Bundle data) {
 if (data.containsKey("message") && QG.isQGMessage(data.getString("message"))) {
 Context context = getApplicationContext();
 Intent intent = new Intent(context, NotificationJobIntentService.class);
 intent.setAction("QG");
 intent.putExtras(data);
 JobIntentService.enqueueWork(context, NotificationJobIntentService.class, 1000, intent);
 return;
 }
}

Installation in Cordova

QGraph supports apps built with Cordova. Please look at our github plugin for cordova here [https://github.com/quantumgraph/cordova].

Using Android SDK

Follow these steps to use our android SDK

Import QG SDK in your activity

In all the activity classes, starting with the class for the main activity, import QG SDK:

import com.quantumgraph.sdk.QG;

Initialization of SDK

	Define a variable called qg in your activity:

private QG qg;

	Add a line in onCreate() of your activity.
If you do not use Firebase in your app, add the following:

QG.initializeSdk(getApplication(), <your app id>);

If you use Firebase in your app, you need to know your sender id. In that case, add the following:

QG.initializeSdk(getApplication(), <your app id>, <your sender id>);

App id for your app is available from the settings page of our webapp. To get your sender id, go to your project settings in https://console.firebase.google.com. (You need to access “Cloud Messaging” tab in Firebase console).

[image: _images/fcm-console.png]

	In the onStart() function of your activity, add the following:

qg = QG.getInstance(getApplicationContext());
qg.onStart();

	In case you want to enable GA integration via our SDK, add the following in your main activity’s onCreate():

qg.enableGATrackingWithGAID("<your GA id>");

Replace <your GA id> above with the GA id for your project.

Logging user profiles

User profiles are information about your users, like their name, city, date of birth
or any other information that you may wish to track. You log user profiles by using one or more of the following functions:

qg.setUserId(String userId);

userId is the id of the user. It might be email, or username, or facebook id, or any other form of id that you may wish to keep.

Other functions that you may use are:

qg.setName(String name);
qg.setFirstName(String firstName);
qg.setLastName(String lastName);
qg.setCity(String city);
qg.setEmail(String email);
qg.setDayOfBirth(int day);
qg.setMonthOfBirth(int month);
qg.setYearOfBirth(int year);
qg.setPhoneNumber(String phoneNo);

Other than these functions, you can log your own custom user parameters. You do it using:

qg.setCustomUserParameter(String key, E value);

For instance, you may wish to have the user’s current rating like this:

qg.setCustomUserParameter("current_rating", 123);

As implied by the function definition, the value can be of any data type.

Once user profile is set, you can use this to create personalized messages (For example: “Hi John, exciting deals are available in Mountain View”), or to create user segments (For example you can create a segment of users who were born after 1990 and live in Mountain View)

Apart from above user profile parameters, you can log the UTM source through which the user installed the app, using the following functions:

qg.setUtmSource(String utmSource);
qg.setUtmMedium(String utmMedium);
qg.setUtmTerm(String utmTerm);
qg.setUtmContent(String utmContent);
qg.setUtmCampaign(String utmCampaign);

Logging events

Events are the activities that a user performs in your app, for example, viewing the products, playing a game or listening to a music. Each event has a name (for instance, the event of viewing a product can be called product_viewed), and can have some parameters. For instance,
for event product_viewed, the parameters can be id (the id of the product viewed), name (name of the product viewed), image_url (image url of the product viewed), deep_link (a deep link which takes one to the product page in the app), and so on.

Once you log event information to use, you can segment users on the basis of the events (For example, you can create a segment consisting of users have not launched for past 7 days, or you can create a segment consiting of users who, in last 7 days, have purchased a product whose value is more than $1000)

You can also define your events, and your own parameters for any event. However, if you do that, you will need to sync up with us to be able to segment the users on the basis of these events or customize your creatives based on these events.

You can optionally log a “value to sum” with an event. This value will be summed up when doing campaing attribution. For instance, if you pass this value in your checkout completed event, you will be able to view stats such as a particular campaign has been responsible to drive Rs 84,000 worth of sales. You can also optionally provide a currency code for the value to sum. Currency needs to be a 3 digit code A currency, as described in this page [http://www.nationsonline.org/oneworld/currencies.htm].

Thus, there are four variants of the function logEvent() which logs the event

	logEvent(String eventName)

	logEvent(String eventName, JSONObject parameters)

	logEvent(String eventName, JSONObject parameters, double valueToSum)

	logEvent(String eventName, JSONObject parameters, double valueToSum, String valueToSumCurrency)

Here is how you set up some of the popular events.

Registration Completed

This event does not have any parameters:

QG qg = QG.getInstance(getApplicationContext());
JSONObject registrationDetails = new JSONObject();
try {
 qg.logEvent("registration_completed", registrationDetails);
} catch (JSONException e) {
}

Category Viewed

This event has one paraemter:

QG qg = QG.getInstance(getApplicationContext());
JSONObject categoryDetails = new JSONObject();
try {
 categoryDetails.put("category", "apparels");
} catch (JsonException e) {
}
qg.logEvent("category_viewed", categoryDetails);

Product Viewed

You may choose to have the following fields:

QG qg = QG.getInstance(getApplicationContext());
JSONObject productDetails = new JSONObject();
try {
 productDetails.put("id", "123");
 productDetails.put("name", "Nikon Camera");
 productDetails.put("image_url", "http://mysite.com/products/123.png");
 productDetails.put("deep_link", "myapp//products?id=123");
 productDetails.put("type", "new");
 productDetails.put("category", "electronics");
 productDetails.put("brand", "Nikon");
 productDetails.put("color", "white");
 productDetails.put("size", "small");
 productDetails.put("price", 6999);
} catch (JsonException e) {
}
qg.logEvent("product_viewed", productDetails);

Product Added to Cart:

QG qg = QG.getInstance(getApplicationContext());
JSONObject productDetails = new JSONObject();
try {
 productDetails.put("id", "123");
 productDetails.put("name", "Nikon Camera");
 productDetails.put("image_url", "http://mysite.com/products/123.png");
 productDetails.put("deep_link", "myapp//products?id=123");
 productDetails.put("type", "new");
 productDetails.put("category", "electronics");
 productDetails.put("brand", "Nikon");
 productDetails.put("color", "white");
 productDetails.put("size", "small");
 productDetails.put("price", 6999);
} catch (JsonException e) {
}
qg.logEvent("product_added_to_cart", productDetails);

Product Added to Wishlist:

QG qg = QG.getInstance(getApplicationContext());
JSONObject productDetails = new JSONObject();
try {
 productDetails.put("id", "123");
 productDetails.put("name", "Nikon Camera");
 productDetails.put("image_url", "http://mysite.com/products/123.png");
 productDetails.put("deep_link", "myapp//products?id=123");
 productDetails.put("type", "new");
 productDetails.put("category", "electronics");
 productDetails.put("brand", "Nikon");
 productDetails.put("color", "white");
 productDetails.put("size", "small");
 productDetails.put("price", 6999);
} catch (JsonException e) {
}
qg.logEvent("product_added_to_wishlist", productDetails);

Product Purchased:

QG qg = QG.getInstance(getApplicationContext());
JSONObject productDetails = new JSONObject();
try {
 productDetails.put("id", "123");
 productDetails.put("name", "Nikon Camera");
 productDetails.put("image_url", "http://mysite.com/products/123.png");
 productDetails.put("deep_link", "myapp//products?id=123");
 productDetails.put("type", "new");
 productDetails.put("category", "electronics");
 productDetails.put("brand", "Nikon");
 productDetails.put("color", "white");
 productDetails.put("size", "small");
 productDetails.put("price", 6999);
} catch (JsonException e) {
}
qg.logEvent("product_purchased", productDetails, 6999);
/* Or if you do not want to pass the third argument, you can simply write
qg.logEvent("product_purchased", productDetails);*/

Checkout Initiated:

QG qg = QG.getInstance(getApplicationContext());
JSONObject checkoutDetails = new JSONObject();
try {
 checkoutDetails.put("num_products", 2);
 checkoutDetails.put("cart_value", 12998.44);
 checkoutDetails.put("deep_link", "myapp://myapp/cart");
} catch (JsonException e) {
}
qg.logEvent("checkout_initiated", checkoutDetails);

Checkout Completed:

QG qg = QG.getInstance(getApplicationContext());
JSONObject checkoutCompleted = new JSONObject();
try {
 checkoutDetails.put("num_products", 2);
 checkoutDetails.put("cart_value", 12998.44);
 checkoutDetails.put("deep_link", "myapp://myapp/cart");
} catch (JsonException e) {
}
qg.logEvent("checkout_completed", checkoutDetails, 12998.44);
/* Or if you do not want to pass the third argument, you can simply write
qg.logEvent("product_purchased", productDetails);*/

Product Rated:

QG qg = QG.getInstance(getApplicationContext());
JSONObject rating = new JSONObject();
try {
 rating.put("id", "1232");
 rating.put("rating", 2);
} catch (JsonException e) {
}
qg.logEvent("product_rated", rating);

Searched:

QG qg = QG.getInstance(getApplicationContext());
JSONObject search = new JSONObject();
try {
 search.put("id", "1232");
 search.put("rating", 2);
} catch (JsonException e) {
}
qg.logEvent("product_rated", rating);

Reached Level:

QG qg = QG.getInstance(getApplicationContext());
JSONObject level = new JSONObject();
try {
 level.put("level", 23);
} catch (JsonException e) {
}
qg.logEvent("level", rating);

Your custom events

Apart from above predefined events, you can create your own custom events, and
have custom parameters in them:

QG qg = QG.getInstance(getApplicationContext());
JSONObject json = new JSONObject();
try {
 json.put("my_param", "some value");
 json.put("some_other_param", 123);
 json.put("what_ever", 1234.23);
} catch (JsonException e) {
}
qg.logEvent("my_custom_event", json);

Retrieving stored notifications

We provide the facility to store the notifications that you send. To enable notification
storage, please contact us at app@qgraph.io. We automatically store the notifications
which arrive at the SDK, and you can access them at any point of time. Here is how
you access stored notifications:

JSONArray storedNotifications = QG.getInstance(context).getStoredNotifications();

Different notifications have different fields. All of them have a title and
message. They may also have imageUrl (URL of icon image), bigImageUrl
(URL of the big image), deepLink and some other fields depending on the type
of the notification.

Configuring Batching

Our SDK batches the network requests it makes to QGraph server, in order to optimize
network usage. It flushes data to the server every 15 seconds, or when number data points exceed 100.

You can force the SDK to flush the data to server any time by calling the following function:

QG.getSharedInstance(context).flush();

InApp Notifications

InApp notfications work by default and you do not have to do anything specific.

In case you wish to disable in-app notifications in some Activity, call:

QG.getInstance(context).hideInApp(Activity activityInWhichInAppIsToBeHidden)

Note that hideInApp(activity) should be called before onStart() of activity in which you wish to hide in-app gets called.

Event Attribution

To track how QG notifications are affecting the metrics on your app, we attribute
some of your app events to QG notifications. We support two types of attributions:
view through attribution and click through attribution. We view-through attribute
an event to a notification if the event happens within 1 hour (this can be
configured) of a user receiving a notification. We click-through attribute an
event to a notification if the event happens within 24 hours (this can be
configured) of a user receiving a notification.

You can see the attribution metrics on the performance page of the campaigns:

[image: _images/attributed-events.png]

You can change view through attribution window by using following function:

QG.getInstance(context).setAttributionWindow(long seconds);

You can change click through attribution window by using following function:

QG.getInstance(context).setClickAttributionWindow(long seconds);

Notification checklist

Launcher image

Make sure that you have an image called ic_launcher.png in your drawable/ folder.
We use this image to display as icon image if you don’t set an icon image explicitly.
This image should be 192px x 192px or larger, with an aspect ratio of 1:1.

Notification image

Make sure that you have an image called ic_notification.png in your drawable/ foler.
This is the image shown in the status bar when a notification arrives. As per Android
guidelines (http://developer.android.com/design/patterns/notifications.html) this image should
be a white image on a transparent background. The size of this image should be 72px x 72px or
larger, with an aspect ratio of 1:1. This is what ic_notification.png should look like:
https://developer.android.com/samples/MediaBrowserService/res/drawable-hdpi/ic_notification.png

Recommended sizes of images

Follow are the recommended sizes of images:

	Big Image Notification - Big image should be 1024px x 512px or larger, with an aspect ratio close to 2:1

	Icon Image - Icon image should be 192px x 192px or larger, with aspect ratio of 1:1

	Carousel Notification - Recommended image size is 600px x 600px, with aspect ratio of 1:1

	Slider Notification - 1024px x 512px or larger, with aspect ratio close to 2:1

	Static Banner Notification - 1024px x 170px with an aspect ratio of 6:1

	Animated Banner Notification - a series of images of 1024px x 170px with an aspect ratio of 6:1

Depending on the screen’s resolution android crops the image to fit it into the container. For this, we recommend that you do not have any text in the 10% margins of Big Image and Carousel.

If you use your own Service to extend GCMListenerService

If you use your own service that extends GCMListenerService, following code snippet
must be added in your service:

@Override
public void onMessageReceived(String from, Bundle data) {
 if (data.containsKey("message") && QG.isQGMessage(data.getString("message"))) {
 Context context = getApplicationContext();
 Intent intent = new Intent(context, NotificationJobIntentService.class);
 intent.setAction("QG");
 intent.putExtras(data);
 JobIntentService.enqueueWork(context, NotificationJobIntentService.class, 1000, intent);
 return;
 }
}

Receiving key value pairs in activity

If you have set key value pairs in the campaign you can get them in the activity. Let’s say
you passed a key valled myKey in the campaign, then you can get its value as following:

@override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Intent intent = getIntent();
 Bundle bundle = intent.getExtras();
 String val = null;
 if (bundle != null) {
 val = bundle.getString("myKey");
 }

 /* More code */
}

iOS SDK integration

For using quantumgraph iOS-SDK, do the following steps.

	Install our quantumgraph iOS-SDK

	Generate a .p12 file

	Using iOS-SDK

Installing iOS SDK Library

Using Cocoapods

The easiest way to integrate quantumgraph iOS SDK into your iOS project is to use CocoaPods.

	Install CocoaPods using gem install cocoapods

	If you are using Cocoapods for the first time, run pod setup to create a local CocoaPods spec mirror.

	Create a file named Podfile in your Xcode project directory and add the following line in it:

pod 'quantumgraph'

Alternatively, in the terminal, in the xcode project directory, type:

pod init

Your pod file is created and now you can add pod 'quantumgraph' to the specific targets you want.

	Run pod install in Xcode project directory. Cocoapods will downloads and install the quantumgraph iOS-SDK library and create a new Xcode workspace. From now on you should use this workspace.

Manual installation

Download the SDK from here:

For Objective C: http://app.qgraph.io/static/sdk/ios/QGSdk-ObjC-3.3.4.zip

For Swift: http://app.qgraph.io/static/sdk/ios/QGSdk-Swift-3.3.4.zip

	In your Xcode project, Go to File, add new Group to your project and name it as QGSdk.

	Add libQSdk.a and QGSdk.h in QGSdk group

	Go to Project -> Target -> Build Phases. In the section “Link Binary with Libraries”, add following frameworks:

	AdSupport.framework

	SystemConfiguration.framework

	CoreTelephony.framework

	CoreLocation.framework

	ImageIO.framework

	MobileCoreServices.framework

	libz.tbd

We track location only if you initialize location service. If you don’t add location usage key in info.plist file, we don’t track the location of the user.

However, you do not need to add these frameworks if you use cocoapods.

Generating .p12 file

Generating SSL Certificate for APP ID

	Log in to the iOS Dev Center and select the Certificates, Identifiers and Profiles

	Go to App IDs in the Identifiers Section of the sidebar and select your app if automatically created. Skip to Step 6.

	To create new App click + and fill the details for App ID, App Services (Check the push notification Checkbox) and Explicit App ID(Should be same as Bundle ID in your App)

	You will be asked to verify the details of the app id, if everything seems okay click Register.

	In the Push Notification row there are two orange lights that say “Configurable” in the Development and Distribution column.

	Select your App ID and click on EDIT.

	If Push Notification is not enabled, enable it to make it configurable.

	Select the Create Certificate in the Development/Production SSL Certificate

	In the next step it will ask you for generating a CSR

Generating the Certificate Signing Request

	Open Keychain Access on your Mac and choose the menu option Certificate Assistant -> Request a Certificate from a Certificate Authority

	Enter some descriptive name for Common Name (Give your app name appended by QGraph preferably to identify it)

	Check Save to disk option and click continue. It saves a .certSigningRequest file.

	In the Keys section of the Keychain Access, a new private key would have appeared with Common name specified

	In the “App IDs” section in the apple developer account, choose the CSR that you generated to create the push certificate

	Click Continue and download the certificate

	Double click on the downloaded certificate. This will add your certificate to your private key in your keychain

	Go to Keys section in the Keychain and find your private key

	You should be able to expand the private key and find your certificate with it. Select both the private key and the certificate after expanding (as shown in the snapshot)

[image: _images/p12-1.png]

[image: _images/p12-2.png]

	Right click on it to export it as .p12 file. Make sure you are exporting 2 items as shown￼

	Name your file as your_app_name and save it with file format .p12

	You will be prompted to enter a password. You can directly click Ok or add any password to it. If you add any password please remember it and send it along with your .p12 file.

	In the next step, you will require your system password to finally save the file.

Your p12 file is ready to be exported. Upload it in your account. Go to “Integration” -> “iOS” to upload p12 files.

Using iOS SDK - Objective C

Change required for APNS Token and User Tracking

It is required by QG SDK that you enable Background Mode in the Capabilities section of the main app target. After enabling background modes, select Remote Notification as shown in the snapshot.

[image: _images/ios-1.png]

AppDelegate Changes

To initialise the library, in AppDelegate add #import "QGSdk.h"

In didFinishLaunchingWithOptions method of AppDelegate, add the following code for registering for remote notification:

(BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 if (floor(NSFoundationVersionNumber) < NSFoundationVersionNumber_iOS_8_0) {
 // here you go with iOS 7
 [[UIApplication sharedApplication] registerForRemoteNotificationTypes: (UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound | UIRemoteNotificationTypeAlert)];
 } else {
 // registering push notification in ios 8 and above
 UIUserNotificationType types = UIUserNotificationTypeAlert | UIUserNotificationTypeSound |
 UIUserNotificationTypeBadge;
 UIUserNotificationSettings *settings = [UIUserNotificationSettings settingsForTypes:types
 categories:nil];
 [[UIApplication sharedApplication] registerUserNotificationSettings:settings];
 }
 //replace <your app id> with the one you received from QGraph
 [[QGSdk getSharedInstance] onStart:@"<YOUR APP ID>" setDevProfile:NO];

 return YES;
}

Note that [[UIApplication sharedApplication] registerForRemoteNotifications] is called by our SDK for iOS 8 and iOS 9.

For development profile, set Boolean to YES in the following method:

[[QGSdk getSharedInstance] onStart:@"<your app id>" setDevProfile:YES];

Just build and run the app to make sure that you receive a message that app would like to send push notification. If you get code signing error, make sure that proper provisioning profile is selected

Add the following code in AppDelegate.m to get the device token for the user:

- (void)application:(UIApplication*)application didRegisterForRemoteNotificationsWithDeviceToken:(NSData*)deviceToken
{
 NSLog(@"My token is: %@", deviceToken);
 [[QGSdk getSharedInstance] setToken:deviceToken];
}

- (void)application:(UIApplication*)application didFailToRegisterForRemoteNotificationsWithError:(NSError*)error
{
 NSLog(@"Failed to get token, error: %@", error.localizedDescription);
}

QGSdk setToken method will log user’s token so that you can send push notification to the user.

Handling Push Notification

Notifications are delivered while the app is in foreground, background or not running state.
We can handle them in the following delegate methods.

If the remote notification is tapped, the system launches the app and the app calls its
delgate’s application:didFinishLaunchingWithOptions: method, passing in the notification payload (for remote notifications). Although application:didFinishLaunchingWithOptions: is not the best place to handle the notification, getting the payload at this point gives you the opportunity to start the update process before your handler method is called.

For remote notifications, the system also calls the application:didReceiveRemoteNotification:fetchCompletionHandler: method of the app delegate.

You can handle the notification and its payload as described:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // Payload can be handled in this way
 NSDictionary *notification = [launchOptions objectForKey:UIApplicationLaunchOptionsRemoteNotificationKey];
 if (notification) {
 // you custom methods…
 }
 return YES;
}

The notification is delivered when the app is running in the foreground. The app calls the
application:didReceiveRemoteNotification:fetchCompletionHandler: method of the app
delegate. (If application:didReceiveRemoteNotification:fetchCompletionHandler: is not
implemented, the system calls application:didReceiveRemoteNotification:.) However, it
is advised to use application:didReceiveRemoteNotification:fetchCompletionHandler:
method to handle push notification.

Implementation:

- (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDictionary *)userInfo
 fetchCompletionHandler:(void (^)(UIBackgroundFetchResult result))handler {
 // Please make sure you add this method
 [[QGSdk getSharedInstance] application:application didReceiveRemoteNotification:userInfo];

 handler(UIBackgroundFetchResultNoData);
 NSLog(@"Notification Delivered”);
 }

You can also handle background operation using the above method once remote notification is delivered. For this make sure, wake app in background is selected while creating a campaign to send the notification.

If you have implemented application:didReceiveRemoteNotification: add method [[QGSdk getSharedInstance] application:application didReceiveRemoteNotification:userInfo]; inside it. Your implementation should look like:

- (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDictionary *)userInfo {
 [[QGSdk getSharedInstance] application:application didReceiveRemoteNotification:userInfo];
}

Changes for iOS 10

For integrating QGraph notification SDK, you need to add Capabilities APP GROUPS. Go to Project > Main Target > Capabilities. Check on App Groups and add a group as below. Use your bundle id to create App Group. For example, if your bundle id is com.company.appname, App Group could be group.com.company.appname.xyz.

[image: _images/ios-10-1.png]

[image: _images/ios-10-2.png]

You need App Group so that data can be shared between extensions. Use that App Group name in onStart:withAppGroup:setDevProfile: in App Delegate.

AppDelegate Changes for iOS 10

Add framework UserNotifications to app target and import in app delegate

#import <UserNotifications/UserNotifications.h>

//Define macros for checking iOS version
#define SYSTEM_VERSION_GREATER_THAN_OR_EQUAL_TO(v) ([[[UIDevice currentDevice] systemVersion] compare:v options:NSNumericSearch] != NSOrderedAscending)
#define SYSTEM_VERSION_LESS_THAN(v) ([[[UIDevice currentDevice] systemVersion] compare:v options:NSNumericSearch] == NSOrderedAscending)

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Override point for customization after application launch.

 QGSdk *qgsdk = [QGSdk getSharedInstance];

 [qgsdk onStart:@"<app_id>" withAppGroup:@“group.com.company.product.extension” setDevProfile:true];

 if (SYSTEM_VERSION_GREATER_THAN_OR_EQUAL_TO(@"10.0")) {
 UNAuthorizationOptions options = (UNAuthorizationOptions) (UNAuthorizationOptionAlert | UNAuthorizationOptionBadge | UNAuthorizationOptionSound | UNAuthorizationOptionCarPlay);

 UNUserNotificationCenter *center = [UNUserNotificationCenter currentNotificationCenter];
 center.delegate = self;

 NSSet *categories = [NSSet setWithObjects:[qgsdk getQGSliderPushActionCategoryWithNextButtonTitle:nil withOpenAppButtonTitle:nil], nil];
 [center setNotificationCategories:categories];

 [center requestAuthorizationWithOptions:options completionHandler:^(BOOL granted, NSError *error){
 NSLog(@"GRANTED: %i, Error: %@", granted, error);
 }];
 } else if (SYSTEM_VERSION_LESS_THAN(@"10.0")) {
 UIUserNotificationType types = UIUserNotificationTypeAlert | UIUserNotificationTypeSound |
 UIUserNotificationTypeBadge;
 UIUserNotificationSettings *settings = [UIUserNotificationSettings settingsForTypes:types
 categories:nil];
 [[UIApplication sharedApplication] registerUserNotificationSettings:settings];
 }
 return YES;
}

NOTE: If you have your own existing notification action category for iOS 10, you can add it along with Graph CAROUSEL/SLIDER category implemented as above. For the carousel and slider push action buttons, you can also specify button titles. Next button will be used to animate the carousel/slider and Open App Button will open the app with deeplink if any.

Handling Push Notification in iOS 10

There are new delegate methods introduced in iOS 10 to track notification and display in foreground state as well. To track notifications in background state, you need to enable background mode in the capabilities. Above all these you need to activate push notification in the capabilities. This will add entitlement files to your app target.

[image: _images/ios-10-3.png]

[image: _images/ios-10-4.png]

	You might have already included this method. Please make sure [[QGSdk getSharedInstance] application:application didReceiveRemoteNotification:userInfo]; is added in it. It is required to track notifications.

//used for silent push handling
//pass completion handler UIBackgroundFetchResult accordingly
- (void)application:(UIApplication *)application didReceiveRemoteNotification:(nonnull NSDictionary *)userInfo fetchCompletionHandler:(nonnull void (^)(UIBackgroundFetchResult))completionHandler {
 [[QGSdk getSharedInstance] application:application didReceiveRemoteNotification:userInfo];
 completionHandler(UIBackgroundFetchResultNoData);
}

	The method will be called on the delegate only if the application is in the foreground. If the method is not implemented or the handler is not called in a timely manner then the notification will not be presented. The application can choose to have the notification presented as a sound, badge, alert and/or in the notification list. This decision should be based on whether the information in the notification is otherwise visible to the user.

- (void)userNotificationCenter:(UNUserNotificationCenter *)center willPresentNotification:(UNNotification *)notification withCompletionHandler:(void (^)(UNNotificationPresentationOptions options))completionHandler {
 [[QGSdk getSharedInstance] userNotificationCenter:center willPresentNotification:notification];

 [UIApplication sharedApplication].applicationIconBadgeNumber = 0;
 UNNotificationPresentationOptions option = UNNotificationPresentationOptionBadge | UNNotificationPresentationOptionSound | UNNotificationPresentationOptionAlert;

 completionHandler(option);
}

	The method will be called on the delegate when the user responded to the notification by opening the application, dismissing the notification or choosing a UNNotificationAction. The delegate must be set before the application returns from applicationDidFinishLaunching:.

NOTE: This method is specifically required for carousel and slider push to work. Also used to track notification_clicked event for QGraph push.

- (void)userNotificationCenter:(UNUserNotificationCenter *)center didReceiveNotificationResponse:(UNNotificationResponse *)response withCompletionHandler:(void(^)())completionHandler {
 [[QGSdk getSharedInstance] userNotificationCenter:center didReceiveNotificationResponse:response];
 completionHandler();
}

Handling Deeplink for QGraph Push

For Push notifications deeplinks should be handled in the method didReceiveNotificationResponse:withCompletionHandler: as described below. You can get the deeplink url and then pass it to openUrl: and then you should get a callback in the application:openUrl:options where you can handle the opening of a specific page.

- (void)userNotificationCenter:(UNUserNotificationCenter *)center didReceiveNotificationResponse:(UNNotificationResponse *)response withCompletionHandler:(void(^)())completionHandler {
 NSDictionary *userInfo = response.notification.request.content.userInfo;
 if ([userInfo objectForKey:@"deepLink"]) {
 NSURL *url = [NSURL URLWithString:userInfo[@"deepLink"]];
 dispatch_async(dispatch_get_main_queue(), ^{
 [[UIApplication sharedApplication] openURL:url];
 });
 }
 [[QGSdk getSharedInstance] userNotificationCenter:center didReceiveNotificationResponse:response];
 completionHandler();
}

For any deeplink specified in In-App campaigns, you should get a callback in the below method. You need to handle it on your own to open any specific page.

- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url options:(NSDictionary<NSString *,id> *)options {
 NSLog(@"deeplink");
 return true;
}

Adding Extensions for iOS Push with Attachment and QGraph Carousel and Slider Push

In iOS 10, two frameworks has been introduced for handling push notification with content. You can have a push notification with image, gif, audio and video. Apart from that you can also have your custom UI for notifications. For this, payload can be modified and used to download content before the notification is drawn. You simply need to follow the below steps to add two of the extensions targets for handling these notifications: Service Extension and Content Extension.

Before proceeding make sure to download all the QGraph files to be used here. You should have these files with you

	QGNotificationSdk

	QGNotificationServiceExtension

	QGNotificationContentExtension

NOTE: These files are to be used with service and content extensions only. Do not add them to main app target.

Notification Service Extension

Service extension is basically the target extension where you get a callback when a push is delivered to the device. You can download and create attachments here. If you fail to download the content and pass it to contentHandler within certain time, default standard notification will be drawn.

Adding Service extension

	Add an iOS target and choose Notification Service extension and proceed. Add a product name and Finish. When created you will be prompted to activate the target. Once activated, you can see 3 files added, NotificationService (.h and .m) and Info.plist.

[image: _images/ios-10-5.png]

	Please delete the NotificationService.h and NotificationService.m files.

	Add files from QGNotificationServiceExtension

	Go to project navigator and select the Service Extension Target

	Select Capabilities and check on App Group and select the APP GROUP which you added to your main app target.

[image: _images/ios-10-6.png]

	Go to NotificationService.m and change your app group

static NSString *APP_GROUP = @"group.com.company.product.extension";

Adding Content Extension

	Add an iOS target and choose Notification Content extension and proceed. Add a product name and Finish. When created you will be prompted to activate the target. Once activated, you can see 4 files added, NotificationViewController (.h and .m), MainInterface.storyboard and Info.plist.

[image: _images/ios-10-7.png]

	Please delete NotificationViewController and MainInterface.storyboard.

	Add these files from QGNotificationContentExtension.

	As done above, enable App Groups and select the same app group through capabilities of the content extension target.

	Go to NotificationViewController.m and change your app group

static NSString *APP_GROUP = @"group.com.company.product.extension";

	Go to Info.plist and add UNNotificationExtensionDefaultContentHidden (Boolean) - YES and UNNotificationExtensionCategory (string) - QGCAROUSEL in NSExtensionAttributes dict of NSExtension dict as shown in the screenshot.

[image: _images/ios-10-8.png]

	Add QuartzCore.framework in this target.

	Add QGNotificationSdk to both extension targets. Do not add it to main app target.

NOTE:

	Please make sure APP_GROUP used in all the three targets are same.

	Set the deployment target to 10.0 in both the extensions.

	Remove -ObjC/$(inherited) (if it exists) from build settings of service and content extension targets.

Click Through and View Through Attribution

QGraph SDK attributes events for each notification clicked or viewed. Events are attributed on the basis of time interval specified for all log events.

Currently, click through attribution works for push notification clicked (sent via QGraph) and InApp notification clicked. View through attribution works only in the case of InApp notifications.

By default click through attribution window (time interval) is set to 86400 seconds (24 hrs) and view through attribution window is set to 3600 seconds (1 hr). You can change this window any time using following apis:

// to set click through attribution window
- (void)setClickAttributionWindow:(NSInteger)seconds;
// to set view through attribution window
- (void)setAttributionWindow:(NSInteger)seconds;

To set a custom value, pass the time interval in seconds. e.g.: to set click attribution window to be 12 hrs:

[[QGSdk getSharedInstance] setClickAttributionWindow:43200];

To disable any of the click through or view through attribution, pass the value 0. E.g.:

[[QGSdk getSharedInstance] setAttributionWindow:0];

Configuring Batching

Our SDK batches the network requests it makes to QGraph server, in order to optimize
network usage. By default, it flushes data to the server every 15 seconds in release builds, and every second in debug builds. This interval is configurable using the following method:

[[QGSdk getSharedInstance] setFlushInterval:<flush interval in seconds>];

Further, you can force the SDK to flush the data to server any time by calling the following function:

[[QGSdk getSharedInstance] flush];

Furthermore, you can invoke a completion handler after flush using function:

[[QGSdk getSharedInstance] flushWithCompletion:^{
 //some method
}];

Matching mobile app users with mobile web users

Our SDK can help you track your mobile app users across your app and mobile web. If you want to enable this functionality, you need to add Safari Services Framework in your app.

If you have added Safari Services Framework in your app, but would like to disable our tracking, use the following function:

[[QGSdk getSharedInstance] disableUserTrackingForSafari];

In app Notification

QGraph SDK supports InApp notification starting in sdk version 2.0.0. InApp notification are supported in two types: Textual and Image. Visit your QGraph account to create InApp Campaigns.

These notifications are shown based on the log events app sends through our sdk and the matching conditions of the InApp Campaigns. Make sure to send appropriate log event (with parameter or valueToSum if any) for InApp notifications to work.

By default, InApp notifications are enabled. You can enable/disable it anytime using following method in the sdk:

- (void)disableInAppCampaigns:(BOOL)disabled;

eg. to disable:

[[QGSdk getSharedInstance] disableInAppCampaigns:YES];

Disabling it will restrict the device to get any new InApp campaigns. It will also
disable InApp notification to be drawn.

For All InApp Notification, you can configure a deep link url from the dashboard
while creating an InApp campaign.

There is tap event defined on textual and image InApps. When the user taps on text on
textual InApp or clicks on image in the image InApp and if there is a valid deep link
setup, you will get a call back in your AppDelegate.m in the following method:

- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url options:(NSDictionary<NSString *,id> *)options;

or:

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(nullable NSString *)sourceApplication annotation:(id)annotation; (Deprecated in iOS_9)

Here you can implement your deep link with the url.

Registering Your Actionable Notification Types

Actionable notifications let you add custom action buttons to the standard iOS interfaces for local and push notifications. Actionable notifications give the user a quick and easy way to perform relevant tasks in response to a notification. Prior to iOS 8, user notifications had only one default action. In iOS 8 and later, the lock screen, notification banners, and notification entries in Notification Center can display one or two custom actions. Modal alerts can display up to four. When the user selects a custom action, iOS notifies your app so that you can perform the task associated with that action.

For defining a notification action and its category, and to handle actionable notification, please refer the description in the apple docs. (Click here [https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html])

Action Category can be set in the dashboard while sending notification. While configuring to send notification through campaigns, use the categories defined in the app.

Logging user profile information

User profiles are information about your users, like their name, city, date of birth or any other information that you may wish to track. You log user profiles by using one or more of the following functions:

- (void)setUserId:(NSString *)userId;

Other methods you may use to pass user profile prameters to us:

- (void)setUserId:(NSString *)userId;
- (void)setName:(NSString *)name;
- (void)setFirstName:(NSString *)name;
- (void)setLastName:(NSString *)name;
- (void)setCity:(NSString *)city;
- (void)setEmail:(NSString *)email;
- (void)setDayOfBirth:(NSNumber *)day;
- (void)setMonthOfBirth:(NSNumber *)month;
- (void)setYearOfBirth:(NSNumber *)year;

Other than these method, you can log your own custom user parameters. You do it using:

- (void)setCustomKey:(NSString *)key withValue:(id)value;

For example, you may wish to have the user’s current rating like this:

[[QGSdk getSharedInstance] setCustomKey:@"current rating" withValue:@"123"];

Logging events information

Events are the activities that a user performs in your app, for example, viewing the products, playing a game or listening to a music. Each event has follow properties:

	Name. For instance, the event of viewing a product is called product_viewed

	Optionally, some parameters. For instance, for event product_viewed, the parameters are id (the id of the product viewed), name (name of the product viewed), image_url (image url of the product viewed), deep_link (a deep link which takes one to the product page in the app), and so on.

	Optionally, a “value to sum”. This value will be summed up when doing campaing attribution. For instance, if you pass this value in your checkout completed event, you will be able to view stats such as a particular campaign has been responsible to drive Rs 84,000 worth of sales.

	Optionally, the currency of value to sum. Currency needs to be a 3 digit code A currency, as described in this page [http://www.nationsonline.org/oneworld/currencies.htm].

You log events using the function logEvent(). It comes in four variations

	(void)logEvent:(NSString *)name

	(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters

	(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters withValueToSum:(NSNumber *) valueToSum

	(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters withValueToSum:(NSNumber *) valueToSum withValueToSumCurrency:(NSString *)vtsCurr

Once you log event information to use, you can segment users on the basis of the events (For example, you can create a segment consisting of users have not launched for past 7 days, or you can create a segment consiting of users who, in last 7 days, have purchased a product whose value is more than $1000)

You can also define your events, and your own parameters for any event. However, if you do that, you will need to sync up with us to be able to segment the users on the basis of these events or customize your creatives based on these events.

You can use the following method to pass event information to us:

- (void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters;

Here is how you set up some of the popular events.

Registration Completed

This event does not have any parameters:

[[QGSdk getSharedInstance] logEvent:@"registration_completed" withParameters:nil];

Category Viewed

This event has one paraemter:

NSMutableDictionary *categoryDetails = [[NSMutableDictionary alloc] init];
[CategoryDetails setObject:@"apparels" forKey: @"category"];

[[QGSdk getSharedInstance] logEvent:@"category_viewed" withParameters:categoryDetails];

Product Viewed

You may choose to have the following fields:

NSMutableDictionary *productDetails = [[NSMutableDictionary alloc] init];
[productDetails setObject:@"123" forKey:@"id"];
[productDetails setObject:@"Nikon Camera" forKey:@"name"];
[productDetails setObject:@"http://mysite.com/products/123.png" forKey:@"image_url"];
[productDetails setObject:@"myapp//products?id=123" forKey:@"deep_link"];
[productDetails setObject:@"black" forKey:@"color"];
[productDetails setObject:@"electronics" forKey:@"category"];
[productDetails setObject:@"small" forKey:@"size"];
[productDetails setObject:@"6999" forKey:@"price"];
[[QGSdk getSharedInstance] logEvent:@"product_viewed" withParameters:productDetails];

Product Added to Wishlist:

NSMutableDictionary *productDetails = [[NSMutableDictionary alloc] init];
[productDetails setObject:@"123" forKey:@"id"];
[productDetails setObject:@"Nikon Camera" forKey:@"name"];
[productDetails setObject:@"http://mysite.com/products/123.png" forKey:@"image_url"];
[productDetails setObject:@"myapp//products?id=123" forKey:@"deep_link"];
[productDetails setObject:@"black" forKey:@"color"];
[productDetails setObject:@"electronics" forKey:@"category"];
[prdouctDetails setObject:@"Nikon" forKey:@"brand"];
[productDetails setObject:@"small" forKey:@"size"];
[productDetails setObject:@"6999" forKey:@"price"];
[[QGSdk getSharedInstance] logEvent:@"product_added_to_wishlist" withParameters:productDetails];

Product Purchased:

NSMutableDictionary *productDetails = [[NSMutableDictionary alloc] init];
[productDetails setObject:@"123" forKey:@"id"];
[productDetails setObject:@"Nikon Camera" forKey:@"name"];
[productDetails setObject:@"http://mysite.com/products/123.png" forKey:@"image_url"];
[productDetails setObject:@"myapp//products?id=123" forKey:@"deep_link"];
[productDetails setObject:@"black" forKey:@"color"];
[productDetails setObject:@"electronics" forKey:@"category"];
[productDetails setObject:@"small" forKey:@"size"];
[productDetails setObject:@"6999" forKey:@"price"];

and then:

[[QGSdk getSharedInstance] logEvent:@"product_purchased" withParameters:productDetails];

or:

[[QGSdk getSharedInstance] logEvent:@"product_purchased" withParameters:productDetails withValueToSum price];

Checkout Initiated:

NSMutableDictionary *checkoutDetails = [[NSMutableDictionary alloc] init];
[checkoutDetails setObject:@"2" forKey:@"num_products"];
[checkoutDetails setObject:@"12998.44" forKey:@"cart_value"];
[checkoutDetails setObject:@"myapp://myapp/cart" forKey:@"deep_link"];
[[QGSdk getSharedInstance] logEvent:@"checkout_initiated" withParameters:checkoutDetails];

Product Rated:

NSMutableDictionary *productRated = [[NSMutableDictionary alloc] init];

[productRated setObject:@"1232" forKey:@"id"];
[productRated setObject:@"2" forKey:@"rating"];
[[QGSdk getSharedInstance] logEvent:@"product_rated" withParameters:productRated];

Searched:

NSMutableDictionary *searchDetails = [[NSMutableDictionary alloc] init];
[searchDetails setObject:@"1232" forKey:@"id"];
[searchDetails setObject:@"Nikon Camera" forKey:@"name"];
[[QGSdk getSharedInstance] logEvent:@"searched" withParameters:searched];

Reached Level:

NSMutableDictionary *level = [[NSMutableDictionary alloc] init];
[level setObject:@"23" forKey:@"level"];
[[QGSdk getSharedInstance] logEvent:@"level" withParameters:level];

Your custom events

Apart from above predefined events, you can create your own custom events, and
have custom parameters in them:

NSMutableDictionary *event = [[NSMutableDictionary alloc] init];
[event setObject:@"2" forKey:@"num_products"];
[event setObject:@"some_value" forKey:@"my_param"];
[event setObject:@"123" forKey:@"some_other_param"];
[[QGSdk getSharedInstance] logEvent:@"my_custom_event" withParameters:event];

Using iOS SDK - Swift (3.0)

Change required for APNS Token and User Tracking

It is required by QG SDK that you enable Background Mode in the Capabilities section of the main app target. After enabling background modes, select Remote Notification as shown in the snapshot.

[image: _images/ios-1.png]

Adding bridging headers

	In Xcode, create the header file and name it by your product module name followed by adding-Bridging-Header.h. File name should look like Project_Name-Bridging-Header.h. Please make sure this header file is in root path of the project (although you can keep it anywhere).

	Now Click on project tab to open Build Settings. In your project target -> Build Setting, search for Objective-C Bridging Header and add path of the Project_Name-Bridging-Header.h. (Project_Name/Project_Name-Bridging-Header.h)

[image: _images/swift-1.png]

	Import SDK header file in the bridging header file. Your file should look like this:

#ifndef Project_Name_Bridging_Header_h
#define Project_Name_Bridging_Header_h
#import "QGSdk.h"
#endif /* Project_Name_Bridging_Header_h */

App Delegate Changes

In didFinishLaunchingWithOptions method of AppDelegate, initialise the sdk using onStart() method add the following code for registering for remote notification:

NOTE: Add UserNotifications.framework and import UserNotifications in AppDelegate for iOS 10 notification.

Also add UNUserNotificationCenterDelegate in AppDelegate. iOS 10 implementation is documented below:

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 let QG = QGSdk.getSharedInstance()
 QG?.onStart("<your_app_id>", setDevProfile: true)

 let settings = UIUserNotificationSettings(types: [.alert, .badge, .sound], categories: nil)
 UIApplication.shared.registerUserNotificationSettings(settings)

 return true
}

Note that UIApplication.shared.registerForRemoteNotifications() is called by our SDK for iOS 8 and above to track APNs Token for user tracking.

Just build and run the app to make sure that you receive a message that app would like to send push notification. If you get code signing error, make sure that proper provisioning profile is selected
Add the following code in AppDelegate.m to get the device token for the user:

func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data) {
 let QG = QGSdk.getSharedInstance()
 print("My token is: \(deviceToken.description)")
 QG?.setToken(deviceToken as Data!)
}

 func application(_ application: UIApplication, didFailToRegisterForRemoteNotificationsWithError error: Error) {
 print("Failed to get token, error: %@", error.localizedDescription)
 }

Handling Push Notification

Notifications are delivered while the app is in foreground, background or not running state. We can handle them in the following delegate methods.

If the remote notification is tapped, the system launches the app and the app calls its delgate’s didFinishLaunchingWithOptions: method, passing in the notification payload (for remote notifications). Although didFinishLaunchingWithOptions: is not the best place to handle the notification, getting the payload at this point gives you the opportunity to start the update process before your handler method is called.

For remote notifications, the system also calls the didReceiveRemoteNotification:fetchCompletionHandler: method of the app delegate.

The notification is delivered when the app is running in the foreground. The app calls the application:didReceiveRemoteNotification:fetchCompletionHandler: method of the app delegate. This method is called if the app is running in background or suspended state. (If application:didReceiveRemoteNotification:fetchCompletionHandler: is not implemented, the system calls application:didReceiveRemoteNotification:.) However, it is advised to use application:didReceiveRemoteNotification:fetchCompletionHandler: method to handle push notification.

Implementation:

func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any], fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult) -> Void) {
 let QG = QGSdk.getSharedInstance()
 // to enable track click on notification
 QG?.application(application, didReceiveRemoteNotification: userInfo)
 completionHandler(UIBackgroundFetchResult.noData)
}

You can also handle background operation using the above method once remote notification is delivered. For this make sure, wake app in background is selected while creating a campaign to send the notification. Also, enable BACKGROUND MODE in capabilities and select Remote Notification.

[image: _images/swift-2.png]

If you have implemented application:didReceiveRemoteNotification: add method QGSdk.getSharedInstance().application(application, didReceiveRemoteNotification: userInfo) inside it. Your implementation should look like:

func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any]) {
 let QG = QGSdk.getSharedInstance()
 // to enable track click on notification
 QG?.application(application, didReceiveRemoteNotification: userInfo)
}

Changes for iOS 10

Your basic integration for iOS 8 and 9 is complete. From iOS 10 and above two new frameworks has been introduced for notifications. For integrating QGraph notification SDK, you need to add Capabilities APP GROUPS. Go to Project > Main Target > Capabilities. Check on App Groups and add a group as below. Use your bundle id to create App Group. For example, if your bundle id is com.company.appname, App Group could be group.com.company.appname.xyz.

[image: _images/swift-3.png]

[image: _images/swift-4.png]

You need App Group so that data can be shared between extensions. Use that App Group name in onStart:withAppGroup:setDevProfile: in App Delegate.

AppDelegate Changes for Swift Apps for iOS 10

Add framework UserNotifications to app target and import in app delegate. Also add UNUserNotificationCenterDelegate in it:

import UIKit
import UserNotifications

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, UNUserNotificationCenterDelegate {

 var window: UIWindow?

 let APP_GROUP = “group.com.company.product.extension”

 func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.

 let QG = QGSdk.getSharedInstance()
 QG?.onStart(“<your_app_id>”, withAppGroup: APP_GROUP, setDevProfile: true)

 if #available(iOS 10.0, *) {
 let center = UNUserNotificationCenter.current()
 center.delegate = self

 // adding category for QGraph Carousel and Slider Push
 let categories = NSSet(object: QG!.getQGSliderPushActionCategory(withNextButtonTitle: nil, withOpenAppButtonTitle: nil)) as! Set<UNNotificationCategory>
 center.setNotificationCategories(categories)

 center.requestAuthorization(options: [.badge, .carPlay, .alert, .sound]) { (granted, error) in
 print("Granted: \(granted), Error: \(error)")
 }

 } else {
 // Fallback on earlier versions
 let settings = UIUserNotificationSettings(types: [.alert, .badge, .sound], categories: nil)
 UIApplication.shared.registerUserNotificationSettings(settings)
 }

 return true
 }

}

NOTE: If you have your own existing notification action category for iOS 10, you can add it along with QGraph CAROUSEL/SLIDER category. For the carousel and slider push action buttons, you can also specify button titles. Next button will be used to animate the carousel/slider and Open App Button will open the app with deeplink if any.

Handling Push Notification in iOS 10

There are new delegate methods introduced in iOS 10 to track notification and display in foreground state as well. To track notifications in background state, you need to enable background mode in the capabilities. Above all these you need to activate push notification in the capabilities. This will add entitlement files to your app target.

	You might have already included this method. Please make sure QGSdk.getSharedInstance().application(application, didReceiveRemoteNotification: userInfo) is added in it. It is required to track notifications:

func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any], fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult) -> Void) {
 let QG = QGSdk.getSharedInstance()
 // to enable track click on notification
 QG?.application(application, didReceiveRemoteNotification: userInfo)
 completionHandler(UIBackgroundFetchResult.noData)
}

	The below method will be called on the delegate only if the application is in the foreground. If the method is not implemented or the handler is not called in a timely manner then the notification will not be presented. The application can choose to have the notification presented as a sound, badge, alert and/or in the notification list. This decision should be based on whether the information in the notification is otherwise visible to the user:

@available(iOS 10.0, *)
func userNotificationCenter(_ center: UNUserNotificationCenter, willPresent notification: UNNotification, withCompletionHandler completionHandler: @escaping (UNNotificationPresentationOptions) -> Void) {
 QGSdk.getSharedInstance().userNotificationCenter(center, willPresent: notification)
 completionHandler([.alert, .badge, .sound]);
}

	The method will be called on the delegate when the user responded to the notification by opening the application, dismissing the notification or choosing a UNNotificationAction. The delegate must be set before the application returns from applicationDidFinishLaunching:.

NOTE: This method is specifically required for carousel and slider push to work. Also used to track notification_clicked event for QGraph push:

@available(iOS 10.0, *)
func userNotificationCenter(_ center: UNUserNotificationCenter, didReceive response: UNNotificationResponse, withCompletionHandler completionHandler: @escaping () -> Void) {
 QGSdk.getSharedInstance().userNotificationCenter(center, didReceive: response)
 completionHandler()
}

Handling Deeplink for QGraph Push

For Push notifications deeplinks should be handled in the method didReceiveNotificationResponse:withCompletionHandler: as described below. You can get the deeplink url and then pass it to openUrl: and then you should get a callback in the application:openUrl:options where you can handle the opening of a specific page.

@available(iOS 10.0, *)
func userNotificationCenter(_ center: UNUserNotificationCenter, didReceive response: UNNotificationResponse, withCompletionHandler completionHandler: @escaping () -> Void) {
 let userInfo = response.notification.request.content.userInfo
 if (userInfo["deepLink"] != nil) {
 let url = URL.init(string: userInfo["deepLink"] as! String)
 DispatchQueue.main.async {
 UIApplication.shared.openURL(url!)
 }
 }

 QGSdk.getSharedInstance().userNotificationCenter(center, didReceive: response)
 completionHandler()
}

For any deeplink specified in In-App campaigns, you should get a callback in the below method. You need to handle it on your own to open any specific page.

func application(_ app: UIApplication, open url: URL, options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {
 print("deeplink called")
 return true
}

Finally, after adding all the above methods your app delegate should look like:

import UIKit
import UserNotifications

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, UNUserNotificationCenterDelegate {

 var window: UIWindow?

 let APP_GROUP = “group.com.company.product.extension”

 func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.

 let QG = QGSdk.getSharedInstance()
 QG?.onStart(“<your_app_id>”, withAppGroup: APP_GROUP, setDevProfile: true)

 if #available(iOS 10.0, *) {
 let center = UNUserNotificationCenter.current()
 center.delegate = self

 let categories = NSSet(object: QG!.getQGSliderPushActionCategory(withNextButtonTitle: nil, withOpenAppButtonTitle: nil)) as! Set<UNNotificationCategory>
 center.setNotificationCategories(categories)

 center.requestAuthorization(options: [.badge, .carPlay, .alert, .sound]) { (granted, error) in
 print("Granted: \(granted), Error: \(error)")
 }

 } else {
 // Fallback on earlier versions
 let settings = UIUserNotificationSettings(types: [.alert, .badge, .sound], categories: nil)
 UIApplication.shared.registerUserNotificationSettings(settings)
 }

 return true
 }

 func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data) {
 let QG = QGSdk.getSharedInstance()
 print("My token is: \(deviceToken.description)")
 QG?.setToken(deviceToken as Data!)
 }

 func application(_ application: UIApplication, didFailToRegisterForRemoteNotificationsWithError error: Error) {
 print("Failed to get token, error: %@", error.localizedDescription)
 }

 func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any], fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult) -> Void) {
 let QG = QGSdk.getSharedInstance()
 // to enable track click on notification
 QG?.application(application, didReceiveRemoteNotification: userInfo)
 completionHandler(UIBackgroundFetchResult.noData)
 }

 @available(iOS 10.0, *)
 func userNotificationCenter(_ center: UNUserNotificationCenter, didReceive response: UNNotificationResponse, withCompletionHandler completionHandler: @escaping () -> Void) {
 QGSdk.getSharedInstance().userNotificationCenter(center, didReceive: response)
 completionHandler()
 }

 @available(iOS 10.0, *)
 func userNotificationCenter(_ center: UNUserNotificationCenter, willPresent notification: UNNotification, withCompletionHandler completionHandler: @escaping (UNNotificationPresentationOptions) -> Void) {
 QGSdk.getSharedInstance().userNotificationCenter(center, willPresent: notification)

 completionHandler([.alert, .badge, .sound]);
 }

 func application(_ app: UIApplication, open url: URL, options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {
 print("deeplink called")
 return true
 }
}

Adding Extensions for iOS Push with Attachment and QGraph Carousel and Slider Push

In iOS 10, two frameworks has been introduced for handling push notification with content. You can have a push notification with image, gif, audio and video. Apart from that you can also have your custom UI for notifications. For this, payload can be modified and used to download content before the notification is drawn. You simply need to follow the below steps to add two of the extensions targets for handling these notifications: Service Extension and Content Extension.
Before proceeding make sure to download all the QGraph files to be used here. You should have these files with you

	QGNotificationSdk

	QGNotificationServiceExtension

	QGNotificationContentExtension

NOTE: These files are to be used with service and content extensions only. Do not add them to main app target.

Notification Service Extension

Service extension is basically the target extension where you get a callback when a push is delivered to the device. You can download and create attachments here. If you fail to download the content and pass it to contentHandler within certain time, default standard notification will be drawn.

Adding Service extension

	Add an iOS target and choose Notification Service extension and proceed. Add a product name and Finish. When created you will be prompted to activate the target. Once activated, you can see 2 files added, NotificationService.swift and Info.plist in the created target.

[image: _images/swift-5.png]

	Delete the NotificationService.swift file from the service extension target.

	Add file NotificationService.swift from downloaded folder QGNotificationServiceExtension

	Go to project navigator and select the Service Extension Target

	Select Capabilities and check on App Group and select the APP GROUP which you added to your main app target.

[image: _images/swift-6.png]

	Go to NotificationService.swift and change your app group:

let APP_GROUP = "group.com.company.product.extension"

Adding Content Extension

	Add an iOS target and choose Notification Content extension and proceed. Add a product name and Finish. When created you will be prompted to activate the target. Once activated, you can see 3 files added, NotificationViewController.swift, MainInterface.storyboard and Info.plist.

[image: _images/swift-7.png]

	Delete NotificationViewController.swift and MainInterface.storyboard.

	Add files NotificationViewController.swift and MainInterface.storyboard from downloaded folder QGNotificationContentExtension.

	As done above, enable App Groups and select the same app group through capabilities of the content extension target.

	Go to NotificationViewController.m and change your app group:

let APP_GROUP = "group.com.company.product.extension"

	Go to Info.plist and add UNNotificationExtensionDefaultContentHidden (Boolean) - YES and UNNotificationExtensionCategory (string) - QGCAROUSEL in NSExtensionAttributes dict of NSExtension dict as shown in the screenshot.

[image: _images/swift-8.png]

	Add QuartzCore.framework in this target.

	Add QGNotificationSdk to both extension targets. Do not add it to main app target.

NOTE:

	Please make sure APP_GROUP used in all the three targets are same.

	Set the deployment target to 10.0 in both the extensions.

	Remove -ObjC/$(inherited) (if it exists) from build settings of service and content extension targets.

IMP: You need to add QGNotificationSdk.h and iCarousel.h in Bridging-Header, so that these objective C files can be used in your extension targets.

Go to Project -> Extension Targets -> Build Setting -> Objective-C Bridging Header

Add the path to your bridging-header-file similar to Main App Target.

[image: _images/swift-9.png]

Note: Add bridging-header-file in any one of the extensions (service extension or content extension) and then add the file path of bridging header in both the extensions.

Click Through and View Through Attribution

QGraph SDK attributes events for each notification clicked or viewed. Events are attributed on the basis of time interval specified for all log events.

Currently, click through attribution works for push notification clicked (sent via QGraph) and InApp notification clicked. View through attribution works only in the case of InApp notifications.

By default click through attribution window (time interval) is set to 86400 seconds (24 hrs) and view through attribution window is set to 3600 seconds (1 hr). You can change this window any time using following apis:

// to set click through attribution window
- (void)setClickAttributionWindow:(NSInteger)seconds;
// to set view through attribution window
- (void)setAttributionWindow:(NSInteger)seconds;

To set a custom value, pass the time interval in seconds. e.g.: to set click attribution window to be 12 hrs:

QGSdk.getSharedInstance().setClickAttributionWindow(43200)

To disable any of the click through or view through attribution, pass the value 0. E.g.:

QGSdk.getSharedInstance().setAttributionWindow(0)

Configuring Batching

Our SDK batches the network requests it makes to QGraph server, in order to optimize network usage. By default, it flushes data to the server every 15 seconds in release builds, and every second in debug builds. This interval is configurable using the following method:

QGSdk.getSharedInstance().flushInterval = <flush interval in seconds>

Further, you can force the SDK to flush the data to server any time by calling the following function:

QGSdk.getSharedInstance().flush()

Furthermore, you can invoke a completion handler after flush using function:

QGSdk.getSharedInstance().flush(completion: {
 //some method
})

Matching mobile app users with mobile web users

Our SDK can help you track your mobile app users across your app and mobile web. If you want to enable this functionality, you need to add Safari Services Framework in your app.

If you have added Safari Services Framework in your app, but would like to disable our tracking, use the following function:

QGSdk.getSharedInstance().disableUserTrackingForSafari()

In app Notification

QGraph SDK supports InApp notification starting in sdk version 2.0.0. InApp notification are supported in two types: Textual and Image. Visit your QGraph account to create InApp Campaigns.

These notifications are shown based on the log events app sends through our sdk and the matching conditions of the InApp Campaigns. Make sure to send appropriate log event (with parameter or valueToSum if any) for InApp notifications to work.

By default, InApp notifications are enabled. You can enable/disable it anytime using following method in the sdk:

- (void)disableInAppCampaigns:(BOOL)disabled;

eg. to disable:

QGSdk.getSharedInstance().disable(inAppCampaigns: true)

Disabling it will restrict the device to get any new InApp campaigns. It will also disable InApp notification to be drawn.

For All InApp Notification, you can configure a deep link url from the dashboard while creating an InApp campaign.

There is tap event defined on textual and image InApps. When the user taps on text on textual InApp or clicks on image in the image InApp and if there is a valid deep link setup, you will get a call back in your AppDelegate.m in the following method:

func application(_ app: UIApplication, open url: URL, options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool

Here you can implement your deep link with the url.

Registering Your Actionable Notification Types

Actionable notifications let you add custom action buttons to the standard iOS interfaces for local and push notifications. Actionable notifications give the user a quick and easy way to perform relevant tasks in response to a notification. Prior to iOS 8, user notifications had only one default action. In iOS 8 and later, the lock screen, notification banners, and notification entries in Notification Center can display one or two custom actions. Modal alerts can display up to four. When the user selects a custom action, iOS notifies your app so that you can perform the task associated with that action.

For defining a notification action and its category, and to handle actionable notification, please refer the description in the apple docs. (please click here [https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html])

Action Category can be set in the dashboard while sending notification. While configuring to send notification through campaigns, use the categories defined in the app.

Logging user profile information

User profiles are information about your users, like their name, city, date of birth or any other information that you may wish to track. You log user profiles by using one or more of the following functions:

- (void)setUserId:(NSString *)userId;

Other methods you may use to pass user profile prameters to us:

- (void)setUserId:(NSString *)userId;
- (void)setName:(NSString *)name;
- (void)setFirstName:(NSString *)name;
- (void)setLastName:(NSString *)name;
- (void)setCity:(NSString *)city;
- (void)setEmail:(NSString *)email;
- (void)setDayOfBirth:(NSNumber *)day;
- (void)setMonthOfBirth:(NSNumber *)month;
- (void)setYearOfBirth:(NSNumber *)year;

Other than these method, you can log your own custom user parameters. You do it using:

- (void)setCustomKey:(NSString *)key withValue:(id)value;

For example, you may wish to have the user’s current rating like this:

QGSdk.getSharedInstance().setCustomKey("current rating", withValue: "123")

Logging events information

Events are the activities that a user performs in your app, for example, viewing the products, playing a game or listening to a music. Each event has follow properties:

	Name. For instance, the event of viewing a product is called product_viewed.

	Optionally, some parameters. For instance, for event product_viewed, the parameters are id(the id of the product viewed), name (name of the product viewed), image_url (image url of the product viewed), deep_link (a deep link which takes one to the product page in the app), and so on.

3. Optionally, a “value to sum”. This value will be summed up when doing campaing attribution. For instance, if you pass this value in your checkout completed event, you will be able to view stats such as a particular campaign has been responsible to drive Rs 84,000 worth of sales.
You log events using the function logEvent(). It comes in four variations.

(void)logEvent:(NSString *)name

(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters

(void)logEvent:(NSString *)name withValueToSum:(NSNumber *) valueToSum

(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters withValueToSum:(NSNumber *) valueToSum

Once you log event information to use, you can segment users on the basis of the events (For example, you can create a segment consisting of users have not launched for past 7 days, or you can create a segment consiting of users who, in last 7 days, have purchased a product whose value is more than $1000)

You can also define your events, and your own parameters for any event. However, if you do that, you will need to sync up with us to be able to segment the users on the basis of these events or customize your creatives based on these events.

You can use the following method to pass event information to us:

- (void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters;

Here is how you set up some of the popular events.

Registration Completed

This event does not have any parameters:

QGSdk.getSharedInstance().logEvent("registration_completed", withParameters: nil)

Category Viewed

This event has one parameter:

let categoryDetails = ["category": "apparels"]
QGSdk.getSharedInstance().logEvent("category_viewed", withParameters: categoryDetails)

Product Viewed

You may choose to have the following fields:

var productDetails : [String:String] = [:]
productDetails["id"] = "123"
productDetails["name"] = "Nikon Camera"
productDetails["image_url"] = "http://mysite.com/products/123.png"
productDetails["deep_link"] = "myapp://products?id=123"
productDetails["color"] = "black"
productDetails["category"] = "electronics"
productDetails["size"] = "small"
productDetails["price"] = "6999"
QGSdk.getSharedInstance().logEvent("product_viewed", withParameters: productDetails)

Product Added to Wishlist

var productDetails : [String:String] = [:]
productDetails["id"] = "123"
productDetails["name"] = "Nikon Camera"
productDetails["image_url"] = "http://mysite.com/products/123.png"
productDetails["deep_link"] = "myapp://products?id=123"
productDetails["color"] = "black"
productDetails["category"] = "electronics"
productDetails["size"] = "small"
productDetails["price"] = "6999"
QGSdk.getSharedInstance().logEvent("product_added_to_wishlist", withParameters: productDetails)

Product Purchased

var productDetails : [String:String] = [:]
productDetails["id"] = "123"
productDetails["name"] = "Nikon Camera"
productDetails["image_url"] = "http://mysite.com/products/123.png"
productDetails["deep_link"] = "myapp://products?id=123"
productDetails["color"] = "black"
productDetails["category"] = "electronics"
productDetails["size"] = "small"
productDetails["price"] = "6999"

and then:

QGSdk.getSharedInstance().logEvent("product_purchased”, withParameters: productDetails)

or:

QGSdk.getSharedInstance().logEvent("product_purchased", withParameters: productDetails, withValueToSum: price)

Checkout Initiated

var checkoutDetails : [String:String] = [:]
checkoutDetails["num_products"] = "2"
checkoutDetails["cart_value"] = "12998.44"
checkoutDetails["deep_link"] = "myapp://myapp/cart"
QGSdk.getSharedInstance().logEvent("checkout_initiated", withParameters: checkoutDetails)

Product Rated

var productRated : [String:String] = [:]
productRated["id"] = "1232"
productRated["rating"] = "2"
QGSdk.getSharedInstance().logEvent("product_rated", withParameters: productRated)

Searched

var searchDetails : [String:String] = [:]
searchDetails["id"] = "1232"
searchDetails["name"] = "2"
QGSdk.getSharedInstance().logEvent(“searched”, withParameters: searchDetails)

Reached Level

let level = ["level" : "23"]
QGSdk.getSharedInstance().logEvent("level", withParameters: level)

Your custom events

Apart from above predefined events, you can create your own custom events, and have custom parameters in them:

var event : [String:String] = [:]
event["num_products"] = "2"
event["my_param"] = "some_value"
event["some_other_param"] = "123"
QGSdk.getSharedInstance().logEvent("my_custom_event", withParameters: event)

Web SDK integration

Background and Terminology

For easier integration, first let us understand some fundamentals. This description holds true
for Google Chrome and Firefox browsers. Fundamentals are the same for Safari, though the details
differ.

Browsers support webpush only for HTTPS sites. We provide a workaround if you have HTTP site
by providing you with a backing HTTPS site.

We give you two files: qg-service-worker.js and manifest.json and a snippet of javascript code.
You install the files in the root folder of your web server and put javascript code in various
web pages of your website. Our tag downloads some more javascript code from our servers.

When a user comes to your website, our code asks the browser to request the user to grant us
the permission to send her web push notifications. If the user agrees, the browser returns
us a token (you can think of it like an address of the browser) which the code transfers to
QuantumGraph servers. Using this token, QuantumGraph servers can send the web push
notification to users.

Our SDK (which gets downloaded from the javascript code that we provide you) also communicates
to QuantumGraph servers the URLs the users are accessing. As a result, you can, using our
web panel, send a push to the users who have browsed a particular URL. Using our SDK, you
can also send us other attributes of the user (such as user id, email, city) and then send
notifications based on those attributes.

To better understand the documentation that follows, it is useful to understand some terminology
used later.

System Prompt

System prompt is that prompt that appears when the browser requests the user to grant a certain
website permission to show her webpush. It looks like this:

[image: _images/web-push-system-prompt.png]

If the user clicks “Allow” then the browser gives a device token to the QG SDK. If the user clicks
“Block” then the browsers does not give the device token to the QG SDK.

Fake prompt

If you display a system prompt to the user and she blocks your website, then the browser does not
allow you to display the system prompt again (unless the user explicity modifies the notification
settings by herself). Thus, before displaying the system prompt, it may be good to ask for a
“pre approval”, by displaying a fake prompt. If the user allows the notifications in the fake prompt,
only then you display the system prompt. If the user disallows the notifications in the fake
prompt, you can show the fake prompt after some time (1 hr, 1 day, or more) and request the
user again.

This is what a fake prompt looks like. You can customize the text as per your needs.

[image: _images/web-push-fake-prompt.png]

Overlay

When displaying the system prompt, you may wish to deemphasize the content of your website,
to direct the user attention to the system prompt. This may be done by an overlay screen, which
looks like this. You can customize the text as per your needs.

[image: _images/web-push-overlay.png]

Thank you prompt

You can display a thank you message once the user has granted permission to send
the web push. You can customize this message, and change its location. It looks like this.

[image: _images/web-push-thank-you.png]

Installing Web Pixel

Here we describe how you can integrate QGraph’s pixel on your website. While testing
web pixel, you should make sure that you are not in incognito mode of web browser,
since web push functionality does not work in incognito mode.

If your site is HTTPS

For HTTPS integration, you can also refer to this video:

 Advanced Integration Topics

Advanced Integration Topics

Passing Dates and Times to QGraph Servers

Sometimes you may wish to pass date or time to QGraph servers. For instances, you may wish to pass the
date of journey to QGraph servers. QGraph SDKs (iOS, android and web) take only integers, real numbers,
strings and booleans as parmeters. Thus, dates and times need to be formatted as strings before they
can be passed to QGraph. This section describes the format which is understood by QGraph servers.

Format for Date

Format for date is YYYY-MM-DD. Thus, July 12, 2017 would be passed as string "2017-07-12".

Format for Time

Format for time is HH:MM:SS where HH is in 24 hour format. Thus, 3:10:06 PM is to be formatted as "15:10:06" and 2:04:42 AM
is to be formatted as "02:04:42".

Format for Datetime

There are two formats for datetime:

	Timezone unaware datetime is of the format YYYY-MM-DDTHH:MM:SS. For example, "2017-07-12T15:10:06".

	Timezone aware datetime format is YYYY-MM-DDTHH:MM:SS[+/-]HH:MM. For example, "2017-07-12T15:10:06+05:30" is a datetime in IST timezone, while "2017-07-12T15:10:06-08:00" is a datetime in PST timezone.

Passing data to QGraph from your servers

The usual way for QGraph to get your users’ data is through our SDKs. As your users’
interact with your android, iOS or web app, you call some functions of QGraph SDK
and transmit the activities to QGraph servers.

In some cases, you would need to pass your users’ data to QGraph through your servers.
For example, if you are an ecommerce website, you may wish to pass QGraph an event
when a customer order has been dispatched, or when an order has been delivered to
your customer. This is so that you may run a triggered campaign on, say, order
delivery, sending a notification to your user when the order has been delivered.

You can pass us two kinds of information about your users:

	Profile information:

This is information like name, city, or birthday of the user.

	Event information:

This is information about an event like an order has been picked up, or an order has been delivered.

To pass data to QGraph servers, you make an HTTP POST request to the following URL:

https://api.quantumgraph.com/qga/clients-data/

Note that in one call, you can transfer the information about one user only.

POST body format is as following:

{
 "appId": <your app id>
 "appSecret": <your app secret>,
 "identifier": <an identifier to identify the user>
 "identifier_value": <value of the identifier>,
 "device": <device type of the user>
 "profiles": <profile information of the user, if any>,
 "events": <even information, if any>
}

Let us consider these fields one by one.

appId is the unique identifier for your account. It is available from “Account Settings” page of your account.

appSecret is the unique secret for your app. It is also available from “Account Settings” page of your account.

identifier is the attribute on the basis of which you identify the user. It can be one of the following: (a) user_id, as set by calling the function setUserId() from within the SDK (b) email, as set by calling the function setEmail() from within the SDK (c) IDFA, for iOS users, (d) advertisingId, for android users. Note that if you are identifying the users through user_id or email, you should have passed the user_id or email of the user to QGraph by calling setUserId() or setEmail() from within the SDK.

identifier_value is the value of the identifier for the user for whom the request is being made.

device is one of android, ios, web or fb.

profiles is an optional key. Its value is a dictionary consisting of key value paris that you want to set for the particular user. An example profile entry would be:

{
 "first_name": "John",
 "last_name": "Doe"
}

events is an optional key. Its value is a list consisting of dictionaries. Each dictionary contains an eventName and an optional dictionary consiting parameters which in turn consists of parameter name and values. Here is an example consisting of a single event:

[{
 "eventName": "user_registered"
}]

And here is an example consisting of two events, one with a parameters and the other without parameters:

[{
 "eventName": "user_registered"
 },
 {
 "eventName": "order_placed",
 "parameters": {
 "order_id": "3j3dkd4k50",
 "order_value": 253
 }
 }]

For example, here is one complete request that you may make:

POST https://api.quantumgraph.com/qga/clients-data/
{
 "appId": "ad55582957817e511c3d",
 "appSecret": "2dbc2fd2358e1ea1b7a6bc08ea647b9a337ac92d",
 "identifier": "email",
 "identifier_value": "johndoe@gmail.com",
 "profiles": {
 "first_name": "John",
 "last_name": "Doe"
 },
 "events": [{
 "eventName": "order_placed",
 "parameters": {
 "order_id": "3j3dkd4k50",
 "order_value": 253
 }

 }]
}

 Using Web UI

Using Web UI

Our web UI is present at http://app.qgraph.io/

Using our web UI, you can

	Follow on boarding steps to send a test notification to your device.

	Create segments and campaigns to send notifications to your app users.

	See analytics related to the notifications that you sent.

	In the UI, you see four sections

	
	Last Modified Users

	Latest Activities

	Campaigns

	Segments

1. Recent Users

This section shows profile of last few users which have been active on the app. Once you do some activity on the app, you should be able to see a user corresponding to you in the app. (You can recognize yourself using some of the fields that you have been logging, like email or username)

Here are the fields that you should know about:

	GCM ID: This is an identifier generated by google which uniquely identifies an app on a device. It needs to be present for QGraph to be able to send a notification to a user.

	user Id: This is your identification of the user. It would usually be an email or user id of the user.

	Other fields: This shows other user profile fields that may have set using functions like setName(), setCity() etc, or setCustomUserParameter().

2. Recent Activities

Here you can see the information regarding last few events which have happened on the app.

You should perform some activity in the app which logs a new event, and check that you can see the event.

3. Segments

A segment is a set of users. In this tab, you specify the criteria for a segment. Users which satisfy all the criteria specified will constitute the segment.

If you do not specify any criteria, segment will contain all the app users.

4. Campaigns

Once you have created one or more segments, you are ready to create a campaign. You choose a creative type. Choose one of “Base”, “Icon”, “Big Image” or “Rolling”. You fill in all the fields.

As a first step, just choose the “Icon” or “Big Image” type and specify various fields. In this step, fill the same strings in “custom” and “default” fields. Select one of the segments, and click “Add Campaign”. Don’t worry, no notifications will go out yet.

You can click “Run” to send the notifications to the users. Refresh the screen after some time and you should see some stats about how many notifications were sent. If you are a part of the segment, you should receive a notification too.

As a second step, you can customize the message in two ways:

	Suppose you have passed us variables in the user profiles called “name” and “city”. Then, if while creating a campaign, in the “custom” title or message you write:

Hello {{name}}, you live in {{city}}.

Then, for each user, {{name}} and {{city}} will be substituted by the actual variable values. For those users in the segment for whom one of these variables is not present, the “default” string provided by you will be used.

	Suppose you provided us an event called product_viewed and in the parameters you specified:

{
 ‘name’: ‘abccamera’,
 ‘pid’: 123,
 ‘price’: 15999,
 ‘image_url’: ‘http://mysite.com/abc-camera.jpg’
 ‘redirect_url’: ‘myapp://myapp.com/123’
}

Then you can refer to “name”, “price”, “image_url”, “redirect_url” as
{{product_viewed.0.name}},
{{product_viewed.0.price}},
{{product_viewed.0.image_url}},
{{product_viewed.0.redirect_url}}
respectively.

You can use the first two variables to customize the message, like this:

Hello {{name}}, the prices of {{product_viewed.0.name}} have fallen by 40%!

And you can specify the last two variables to specify the image and redirect url for the notification.

 Using API

Using API

We provide programmatic access to several features of our platform.

1. Log in on https://app.qgraph.io and click your name on the top right
of the screen. In the drop down menu that comes, select “Account Settings”.
Note down the “API Token” for your account.

2. You need to set Authorization key as "Token: <your API token>" in the header of your http requests.
For instance, if using curl, you do it like this:

curl -H "Authorization: Token abcd" <relevant api url>

Sending notifications

First you need to create a campaign. Go to https://app.qgraph.io, log in, go to “Campaigns” tab and create a new campaign. You can fill any value in the campaign, they will be overridden by what you provide in the api call.

Once you have created the campaign, proceed to edit that campaign. URL of the performance page looks like: https://app.qgraph.io/#/edit_campaign/<campaign id>. Note down the campaign id for your campaign.

Next you can make a HTTP POST request at https://api.qgraph.io/api/v2/send-notification/. The POST body is of the following format:

{
 "cid": <campaign id>,

 "registration_ids": ["regd 1", "regid 2", ..., "regid n" (upto 500 registration ids)]
 or
 "user_ids": ["userid 1", "userid 2", ..., "userid n" (upto 500 userid)]
 or
 "emails": ["email 1", "email 2", ..., "email n" (upto 500 emails)]
 or
 "segment_id": <segment id>

 "message": <message in the format described below>
 "os": "android" or "ios-dev" or "ios-prod" or "web"
}

You need to provide one of registration_ids, user_ids, emails or segment_id. In case you provide segment id, specified segment id must be a valid segment in your account, and notifications will go to that segment. To find segment id of a given segment, proceed to edit that segment. URL of the segment page is of the format https://app.qgraph.io/#/edit_segment/<segment id>.

If you want to send notification to android devices, use android for key os. If you want to send notification to ios devices, use ios-dev or ios-prod, depending on whether you want us to use development profile or production profile. (You should have uploaded the respective .pem file to us)

For a simple android notification, message is of the following format:

{
 "type": "basic",
 "title": <title of the notification>,
 "message": <body of the notification>,
 "imageUrl": <url of the icon image> (optional),
 "bigImageUrl": <url of the big image> (optional),
 "deepLink": <deep link of notification> (optional)
 "actions": [{"id": 1, "text": "<button 1 text>", "deepLink": "<deep link if any>"},
 {"id": 2, "text": "<button 2 text>", "deepLink": "<deep link if any>"},
 {"id": 3, "text": "<button 3 text>", "deepLink": "<deep link if any>"}] <optional>
}

A note about action buttons:
If you would like a campaign with action buttons to be a poll campaign (where, on button press, response of the user is recorded, but the app does not open), set the key poll to true in the message. You can send 1, 2 or 3 actions, and deep link within each button is optional.

For ios notification, message is of the following format:

{
 "aps": {
 "alert": {
 "title": <title of the notification>,
 "body": <body of the notification>
 }
 },
 "deepLink": <deep link> (optional)
}

For banner notification (available only in android), message is of the following format:

{
 "type": "banner",
 "title": <title of the notification>,
 "message": <body of the notification>,
 "contentImageUrl": <url of banner image>,
 "deepLink": <deep link of notification> (optional)
}

For carousel notification (available only in android), message is of the following format:

{
 "type": "carousel",
 "title": <title of the notification>,
 "message": <body of the notification>,
 "deepLink": <deep link of notification> (optional),
 "qg_prev_button":"https://cdn.qgraph.io/img/left.png",
 "qg_next_button":"https://cdn.qgraph.io/img/right.png",
 "carousel": [{"image": "<URL of the image>",
 "deepLink": "<deep link for image, if any>",
 "title": "<title of image (optional)>",
 "message": "<message of image (optional)>"},
 ... you can have up to 10 such elements]
}

Note that you can customize previous and next buttons by using your own image URL.

For slider notification (available only in android), message is of the following format:

{
 "type": "slider",
 "title": <title of the notification>,
 "message": <body of the notification>,
 "deepLink": <deep link of notification>, (optional)
 "qg_prev_button":"https://cdn.qgraph.io/img/left.png",
 "qg_next_button":"https://cdn.qgraph.io/img/right.png",
 "slider": [{"image": "<URL of the image>",
 "deepLink": "<deep link for image, if any>"},
 ... you can have up to 10 such elements]
}

Note that you can customize previous and next buttons by using your own image URL.

For animated banner notification (available only in android), message is of the following format:

{
 "title": <title of the notification>,
 "message": <body of the notification>,
 "deepLink": <deep link of notification>, (optional)
 "gifPlayButton": "https://cdn.qgraph.io/img/video_button.png",
 "type": "animation"
 "animation": {
 "millisecondsToRefresh": <duration between two frames in milliseconds>,
 "images": [url1, url2, ..., url n]
 }
}

If os is “web”, message is of the following format:

{
 "title": <title of the notification>,
 "body": <body of the notification>,
 "icon": <url of the icon image>
}

Specifying key value pairs

You can specify key value pairs in (both android and ios) notifications. To do this, include a key qgPayload
in your message dictionary. qgPayload should contain key-value pairs. For example, a sample message for android
would be:

{
 "type": "basic",
 "title": <title of the notification>,
 "message: <body of the notification>,
 "imageUrl": <url of the icon image> (optional),
 "bigImageUrl": <url of the big image> (optional),
 "deepLink": <deep link of notification> (optional)
 "qgPayload": {
 "key1": "some value",
 "key2": 123
 }
}

Key value pairs can then be extracted in your activity as described here: http://docs.qgraph.io/en/latest/integrating-android-sdk.html#receiving-key-value-pairs-in-activity

Getting user profiles

Send a GET request to https://app.qgraph.io/api/get-user-profiles/. For instance, if your token is abcd, the relevant call in curl would be:

curl -H "Authorization: Token abcd" https://app.qgraph.io/api/get-user-profiles/

Specifying start and end dates

You can optionally provide parameters start_date and end_date to the API call. If these parameters are provided, the API fetches
entries only for the users who have installed the app on or after start_date, but on or before end_date. The format of the both the
arguments is yyyy-mm-dd. A sample call would be:

curl -H "Authorization: Token <your token>" https://app.qgraph.io/api/get-user-profiles/?start_date=2015-12-22&end_date=2015-12-25

For faster response times, you should retrieve the data for small date ranges.

Specifying OS

You can specify the ios for which you want to retrieve data. You specify this by
providing a query parameter os whose values can be android (for android), ios-prod (for ios using production profile), or ios-dev
(for ios using development profile). Default value for os is android. Here is an example of using this variable:

curl -H "Authorization: Token <your token>" https://app.qgraph.io/api/get-user-profiles/?start_date=2015-12-22&end_date=2015-12-25&os=android

Specifying specific fields to retrieve

You can get following fields using the api:

	firstSeen: Date when the user installed your app

	mTime: Latest date when the user accessed your app

	monthlyActivity: Number of days in last 30 days when the user accessed your app

	email: email of the user, if available

	qgCity: city of the user, if available

	uninstallTime: date when we detected that the user has uninstalled your app

	user_id: the user id set by setUserId() function of the SDK

	qgType: tells whether the install is a fresh one or a reinstall

	qgSrc: source of the install, if available

	gcmId: gcm registration id of the user in case of android and device token in case of ios

	deviceId: device id of the user

	advId: advertiser id of the user

You can specify what specific fields you want. For instance, if you want to get firstSeen, uninstallTime and gcmId of all the users who installed
your app between December 1, 2015 and December 3, 2015, the relevant curl call would be:

curl -H "Authorization: Token <your token>" https://app.qgraph.io/api/get-user-profiles/?start_date=2015-12-01&end_date=2015-12-03&fields=firstSeen,uninstallTime,gcmId

For faster response times, you should retrieve only the fields that you need.

Create a user uploaded segment

You usually create a user uploaded segment by manually uploading a file in the Segment -> Add New -> Uploaded Segment. However, you can also do it using our API. Uploading a segment is a two step process:

First you need to upload the segment file. This file needs contain one field value (such as email) per line. You upload it by a command similar to this:

curl -H 'Authorization: Token <your token>'\
 -H 'content-type: multipart/form-data'\
 -F file=@/path/to/your/file\
 https://app.qgraph.io/qganalyzedata/upload-segment-file/

This gives an output like:

{"filename": "upload.csv1495733409.41"}

Here upload.csv1495733409.41 is the temporary name of the file that has been created on the server. You will need this name in the second step.

Secondly, you use above outputted temporary filename to create a segment, like this:

curl -X POST\
 -H 'Authorization: Token <your token>'\
 -H 'appId: <your app id>' \
 -H 'content-type: application/json'\
 -d '{"name": "<name of the segment>", "description": "<description of the segment>", "filename": "<filename produced in step 1>", "field": "<field name whose values are present in the file>"}'\
 https://app.qgraph.io/qganalyzedata/upload_segment/

For instance, if the uploade file contained email, a sample command to upload the file would be:

curl -X POST\
 -H 'Authorization: Token <your token>'\
 -H 'appId: <your app id>'
 -H 'content-type: application/json'\
 -d '{"name": "my uploaded segment", "description": "This is a bunch of emails", "filename": "upload.csv1495733409.41", "field": "email"}'\
 https://app.qgraph.io/qganalyzedata/upload_segment/

Segment is created as a result of this request.

 Downloads

Downloads

Android

AAR file for GCM integration is available at http://jcenter.bintray.com/com/quantumgraph/sdk/QG/2.3.4.1/QG-2.3.4.1.aar

AAR file for FCM integration is available at http://jcenter.bintray.com/com/quantumgraph/sdk/QG/4.3.1/QG-4.3.1.aar

But we recommend that you follow maven based integration outlined in android integration instructions.

iOS

Download QGraph SDK for iOS from here:

For Objective C: http://app.qgraph.io/static/sdk/ios/QGSdk-ObjC-3.3.4.zip

For Swift: http://app.qgraph.io/static/sdk/ios/QGSdk-Swift-3.3.4.zip

We recommend that you follow cocoapods based integration outlined in iOS integration instructions.

 Index

Index

_static/up.png

_images/fcm-console.png
C 8 Secue | etos: canscierebase googe.comii 1rojec 31403 60/t gsicocmessagngan it com auartmragh o3

B Nouteavens

Setting:

AAALCAA AP0 oA ORSSTip S 21OV DKDBFDSTAGOS

MG T RN 5 GOV OHDFhE A INFSOT W AF TP WV T 08
iy

ek aW SR G2

_images/ios-1.png
1
PROJECT
[com.
TARGETS

A GCML.

General Capabiities ResourceTags Info BuldSettngs Buid Phases

) maps

» (7] persontvew

() Background Modes.

Modes:

) Audio, AirPlay, and Picture in Picture

Location updates
Voice over P

Newsstand downloads

External accessory communication
Uses Blustooth LE accessories
Aot as a Bluetooth LE accessory.
Background fetch

Remote notifications

Steps: ¥ Add the Required Background Modes key to your info pist fle

Build Rules.
]

[o< |

_images/attributed-events.png
Campaign Performance - 3DaysAfterlnstall - SLIM

ATTRIBUTED EVENT

SENT DELIVERED cLicks ATTRIBUTED EVENTS VALUES
228175 148337 7558 119382 [}
(65.01%) (5.10%)
7558 Standard 348 product removed_from caft product_removed_from_cart
463 qg_exception 0 ag exception
24290 product viewed 0 product viewed

595 product added_to_cart 0 product_added_to_cart
55 notification_browsed 0 notification_browsed
5992 category_viewed 0 category_viewed
81 checkout_completed 0 checkout_completed
101 product_update in_cart 0 product_update_n_cart
34 product purchased 0 product_purchased
87423 app_launched 0 app_launched

M Delivered M Clicked

05731 06/03 06/07 06/11 06/15 06/19 06/23 06/27

_images/ios-10-3.png
<a>

Buid Phases Build

B < > [B Testapp

[] General Capsbiiies ResourceTags o Buld Settings

B e > s i o
noers

T (% push Nottications

©) TestServiceNotific...

©) TestNotificationCo.. Steps: v/ Add the Push Notifications feature to your App ID.
 Add the Push Notifications enitiement to your entitiement

ot

_images/ios-10-4.png
B8 < > [Testanp <a>
[l General Capabiitis ResourceTegs Info BuidSetings GuldPhases Buid
Vido projectand targets st | (1) rerawe v -

[Testapp
TARGETS
© TestServiceNotic...

©) TestNotificationC

N—

() Background Modes.

[o< |
[o B

Modes: (] Audio, AirPlay, and Picture in Picture
[Location updates

] Voice over IP

Newsstand downloads

) External accessory communication
) Uses Blustooth LE accessories

) Acts as a Blustooth LE accessory
Background fetch

Remote notifications.

Steps: ¥ Add the Required Background Modes key to your info plist

_images/ios-10-1.png
B8 < > [Testapp <a>

[General Capabiities ResourceTags ~ Info Buid Settings Buid Phases Buid
PROJECT v (35) App Groups | on]
[Testarp
TARGETS

App Groups: (] group.com.agraph TestApp.notfication

O aroun comagraphadomos oupt

TestServiceNotifc.] group.com.agraph.agdemoapp.notification
+ ¢

TestotificationCo.

Steps: v/ Add the App Groups entitlement to your entitlements file
v/ Add the App Groups feature to your App ID.
' Add App Groups to your App ID

» 1 Homekit [o+
[o |

») vata rotction

_images/ios-10-2.png
<a>

Build

Add a new container

Xcode will create a new container f the named container doesn't already

e o e Y G g
nomants.]

(E) TestNotificationCo.

Steps: v/ Add the App Groups entitlement to your entitlements file
v/ Add the App Groups feature to your App ID.
' Add App Groups to your App ID

» 1 Homekit [o+

_images/ios-10-5.png
P Te..pp) 7 Generic 05 Device

TestApp | Build TestApp: Succeeded | Todayat10:57 AM /97

nt

Choose a template for your new target:

WANOS OS mac0S Cross-platform ® Fitter
Application Extension
o
& (©) ©) ©) &
Action Extension Broadcast Ul Broadcast Call Directory
Extension Extension
e ~
¢ = < =€
Content Blocker ‘Custom Keyboard Document iMessage Intents Extension
Extension Extension Provider Extension
> &) 4 i
Intents Ul Notification Photo Editing Share Extension
Extension Content. Servi Extension
) () u]u] 1
Cancel Next

_images/ios-10-6.png
[m] General
PROJECT
[Testapp
TARGETS
A Testapp

©) TestNotificationContent

Capabiities ResourceTags ~ Info BuidSettngs BuidPhases Buid Rules

» 5 hesottod omains

v (B App Groups

App Groups: (] group.com.qgraph TestApp.notification
) group.com.agraph.agdemoapp.groupt
) group.com.agraph.agdemoapp.notification
+ ¢

Steps: v/ Add the App Groups entitlement to your entitlements file
v/ Add the App Groups feature to your App ID.
' Add App Groups to your App ID

- i o-
[P i o-

_images/ios-10-7.png
Choose a template for your new target:

WalchOS tOS macOS Cross-platform @ Filter
Application Extension
@ © © S
Action Extension ‘Audio Unit Broadcast Ul Broadcast Call Directory.
Extension Extension Upload Extension Extension
oo — -
¢ = < e =€
Content Blocker Custom Keyboard Document iMessage Intents Extension
Extension Extension Provider Extension
Intents Ul Notification Notification Photo Editing Share Extension
Extension Content Service Extensic Extension
7) 0o 1
Cancel Next

Hificatior

nav.xhtml

 Table of Contents

 		
 Welcome to QGraph’s documentation!

 		
 Introduction

 		
 Why QGraph?

 		
 How do I get started?

 		
 Basics

 		
 How does it work?

 		
 User Profiles and Events

 		
 User Profiles

 		
 Events

 		
 Android SDK integration

 		
 Installation in Android Studio

 		
 A. If you use FCM

 		
 B. If you use GCM

 		
 Installation in Cordova

 		
 Using Android SDK

 		
 Import QG SDK in your activity

 		
 Initialization of SDK

 		
 Logging user profiles

 		
 Logging events

 		
 Retrieving stored notifications

 		
 Configuring Batching

 		
 InApp Notifications

 		
 Event Attribution

 		
 Notification checklist

 		
 Launcher image

 		
 Notification image

 		
 Recommended sizes of images

 		
 If you use your own Service to extend GCMListenerService

 		
 Receiving key value pairs in activity

 		
 iOS SDK integration

 		
 Installing iOS SDK Library

 		
 Using Cocoapods

 		
 Manual installation

 		
 Generating .p12 file

 		
 Generating SSL Certificate for APP ID

 		
 Generating the Certificate Signing Request

 		
 Using iOS SDK - Objective C

 		
 Change required for APNS Token and User Tracking

 		
 AppDelegate Changes

 		
 Handling Push Notification

 		
 Changes for iOS 10

 		
 AppDelegate Changes for iOS 10

 		
 Handling Push Notification in iOS 10

 		
 Handling Deeplink for QGraph Push

 		
 Adding Extensions for iOS Push with Attachment and QGraph Carousel and Slider Push

 		
 Notification Service Extension

 		
 Click Through and View Through Attribution

 		
 Configuring Batching

 		
 Matching mobile app users with mobile web users

 		
 In app Notification

 		
 Registering Your Actionable Notification Types

 		
 Logging user profile information

 		
 Logging events information

 		
 Using iOS SDK - Swift (3.0)

 		
 Change required for APNS Token and User Tracking

 		
 Adding bridging headers

 		
 App Delegate Changes

 		
 Handling Push Notification

 		
 Changes for iOS 10

 		
 AppDelegate Changes for Swift Apps for iOS 10

 		
 Handling Push Notification in iOS 10

 		
 Handling Deeplink for QGraph Push

 		
 Adding Extensions for iOS Push with Attachment and QGraph Carousel and Slider Push

 		
 Notification Service Extension

 		
 Adding Service extension

 		
 Adding Content Extension

 		
 Click Through and View Through Attribution

 		
 Configuring Batching

 		
 Matching mobile app users with mobile web users

 		
 In app Notification

 		
 Registering Your Actionable Notification Types

 		
 Logging user profile information

 		
 Logging events information

 		
 Web SDK integration

 		
 Background and Terminology

 		
 Installing Web Pixel

 		
 If your site is HTTPS

 		
 If your site is HTTP

 		
 Logging Data

 		
 Logging profile information

 		
 Logging event information

 		
 Advanced Integration Topics

 		
 Passing Dates and Times to QGraph Servers

 		
 Format for Date

 		
 Format for Time

 		
 Format for Datetime

 		
 Passing data to QGraph from your servers

 		
 Using Web UI

 		
 1. Recent Users

 		
 2. Recent Activities

 		
 3. Segments

 		
 4. Campaigns

 		
 Using API

 		
 Sending notifications

 		
 Specifying key value pairs

 		
 Getting user profiles

 		
 Specifying start and end dates

 		
 Specifying OS

 		
 Specifying specific fields to retrieve

 		
 Create a user uploaded segment

 		
 Downloads

 		
 Android

 		
 iOS

_images/p12-2.png
Name ~ Kind
g Shiv public key
» Shiv private key.
© SOK 302 Test publc key
¥ SR 30z Test PrvateTey
5] Appe Dovelopment 08 Pcauantury === = feato
+7 aoraph weppush Copy2items [,
@ aoraen Delete 2ftems ../
9 aomen = o
§ Q6-Gk-Quiz-Widget = ey
® QG-GK-Quiz-Widget GetInfo tokey
§ Q6-GK-Quiz Pros e puic key
> QG-GK-Quiz Prog private key.
® 0% Distribution: Vivek Sharma

public key

_images/swift-1.png
] General Capabiities Resource Tags.

B acs..

TARGETS ¥ Swift Compiler - Code Generation
s Sottng
[£7qes... » Objective-C Bridging Header
ass..

+

Info

Buid Settings Build Phases Build Rules

Q- bridgin

A Qesuitdemo
‘Your_App_Name/Your_App_Name-Bridging-}

toader.h

Your_App_NameiYour_App_Name-Bridging-Header.n

_images/ios-10-8.png
Key
¥ Information Property List

Localization native development region

Bundle display name

Executable fie

Bunde identifier

InfoDictionary version

Bundie name.

Bundie 0S Type code

Bunde versions string, short

Bunde version

v NSExtension
¥ NSExtensionAttributes

]

UNNofificationExtensionDefaultContentHidden

UNNotificationExtensionCategory

UNNotificationExtensioninitalContentSizeRatio

NSExtensionMainStoryboard
NSExtensionPointidentifier

Type
Dictionary
String
string
string
string
string
string
string
string
string
Dictionary
Dictionary
Boolean
string
Number
string
string

Value
(10 items)

TestNotificationContent
S(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)

80

S(PRODUCT_NAME)

xpct

10

1

(3items)

(@ items)

ves

QGeAROUSEL

1

Maininterface
‘com.apple.usernotifications.content-extension

_images/p12-1.png
JBss

b asinesing
fogin

Local ltems
System
System Roots

Category

| Allitems.

Passwords
Secure Notes
My Certificates
Keys
Certificates

shiv
shiv
SDK 302 Test

‘agraph webpush
QGraph

QGraph

QG-GK-Quiz-Widget

Q6-GK-Quiz-Widget

Q6-GK-Quiz Prod

Q6-GK-Quiz Prog.

108 Distrioution: Vivek Sharma

108 Distrioution: Vivek Sharma

108 Developer: Vivek Sharma (Vivek Sharma)
108 Developer: Vivek Sharma (Vivek Sharma)
iMessage Encryption Key

iMessage Encryption ey

Apple ID thevivekpandey@gmail.com key

~ Kind
public key.
private key.
public key

private key.
public key.
private key.
public key.
private key.
public key.
private key.
public key.
private key.
public key.
private key.
private key
private key.
public key

_images/swift-4.png
<a>

Build

Add a new container

Xcode will create a new container f the named container doesn't already

e o e Y G g
nomants.]

(E) TestNotificationCo.

Steps: v/ Add the App Groups entitlement to your entitlements file
v/ Add the App Groups feature to your App ID.
' Add App Groups to your App ID

» 1 Homekit [o+

_images/swift-5.png
P Te..pp) 7 Generic 05 Device

TestApp | Build TestApp: Succeeded | Todayat10:57 AM /97

nt

Choose a template for your new target:

WANOS OS mac0S Cross-platform ® Fitter
Application Extension
o
& (©) ©) ©) &
Action Extension Broadcast Ul Broadcast Call Directory
Extension Extension
e ~
¢ = < =€
Content Blocker ‘Custom Keyboard Document iMessage Intents Extension
Extension Extension Provider Extension
> &) 4 i
Intents Ul Notification Photo Editing Share Extension
Extension Content. Servi Extension
) () u]u] 1
Cancel Next

_images/swift-2.png
v () Background Modes

Mod

‘Audio, AirPlay, and Picture in Picture
Location updates

Voice over IP

Newsstand downloads

External accessory communication
Uses Blustooth LE accessories

Aot as a Bluetooth LE accessory.

Background fetch
Remote notifications

Steps: ¥ Add the Required Background Modes key to your info pist fle

_images/swift-3.png
B8 < > [Testapp <a>

[General Capabiities ResourceTags ~ Info Buid Settings Buid Phases Buid
PROJECT v (35) App Groups | on]
[Testarp
TARGETS

App Groups: (] group.com.agraph TestApp.notfication

O aroun comagraphadomos oupt

TestServiceNotifc.] group.com.agraph.agdemoapp.notification
+ ¢

TestotificationCo.

Steps: v/ Add the App Groups entitlement to your entitlements file
v/ Add the App Groups feature to your App ID.
' Add App Groups to your App ID

» 1 Homekit [o+
[o |

») vata rotction

_images/swift-6.png
[m] General
PROJECT
[Testapp
TARGETS
A Testapp

©) TestNotificationContent

Capabiities ResourceTags ~ Info BuidSettngs BuidPhases Buid Rules

» 5 hesottod omains

v (B App Groups

App Groups: (] group.com.qgraph TestApp.notification
) group.com.agraph.agdemoapp.groupt
) group.com.agraph.agdemoapp.notification
+ ¢

Steps: v/ Add the App Groups entitlement to your entitlements file
v/ Add the App Groups feature to your App ID.
' Add App Groups to your App ID

- i o-
[P i o-

_images/swift-7.png
Choose a template for your new target:

WalchOS tOS macOS Cross-platform @ Filter
Application Extension
@ © © S
Action Extension ‘Audio Unit Broadcast Ul Broadcast Call Directory.
Extension Extension Upload Extension Extension
oo — -
¢ = < e =€
Content Blocker Custom Keyboard Document iMessage Intents Extension
Extension Extension Provider Extension
Intents Ul Notification Notification Photo Editing Share Extension
Extension Content Service Extensic Extension
7) 0o 1
Cancel Next

Hificatior

_images/swift-8.png
Key
¥ Information Property List

Localization native development region

Bundle display name

Executable fie

Bunde identifier

InfoDictionary version

Bundie name.

Bundie 0S Type code

Bunde versions string, short

Bunde version

v NSExtension
¥ NSExtensionAttributes

]

UNNofificationExtensionDefaultContentHidden

UNNotificationExtensionCategory

UNNotificationExtensioninitalContentSizeRatio

NSExtensionMainStoryboard
NSExtensionPointidentifier

Type
